
www.manaraa.com

DOCUMENT RESUME

ED 050 760 LI 002 820

TITLE Feature Analysis of Generalized Data Base Management
Systems.

INSTITUTION Conference on Data Systems Languages, Monroeville,
Pa. Systems Committee.

PUB DATE May 71
NOTE 511p.
AVAILABLE FROM Associaticn for Ccmputing Machinery Headquarters,

Order Department, 1133 Avenue of the Americas, New
York, N. Y. 10026 ($8.00)

EDRS PRICE
DESCRIPTORS

ABSTRACT

EDRS Price MF-$0.65 HC-$19.74
Computer Programs, Computers, *Data Bdzes,
Information Retrieval, *Information Storage,
*Information Systems, *Management Information
Systems, *Management Systems, Operations Research,
*Systems Analysis, Systems Development

A more complete definition of the features offered
in present day generalized data base management systems is provided
by this second technical report of the CODASYL Systems Committee. In
a tutorial format, each feature description is followed by either
narrative information covering ten systems or by a table for all
systems. The ten systems covered in this report are: (1) the
Conference on Data Systems Languages' COBOL as defined in the
"Journal of Development," (2) the Data Base Task Group°s proposal,
(3) International Business Machines Corporation's (IBM's) GIS, (4)

General Electric Company's (GE's) IDS, (5) IMB's IMS, (6)

Informatics' MARK IV, (7) IBM's FFS (also known as NIPS) , (8)

Auerbach and Western Electric's SC-1, (9) Systems Development
Corporation's +DMS and (10) Radio Corporation of America's UL/1. (MM)

www.manaraa.com

L'2

US DEPARTMENT OF HEALTH EDUCATIDN
& WELFARE

OFFICE OF EDUCV ON
THIS DOCUMENT HAS BEEN REPRODUCED

EXACTLY AS RECE ',ED FROM THE PERSON OR

ORGANIZATION ORIGINATING IT POINTS OF

VIEW OR OPINIONS STATED DO NOT NECES

SARILY REPRESENT OFFICIAL OFFICE OF EDU

CATION POSITION OR POLICY

-

'4.
4-4 ";$4, 4 !'

Al

www.manaraa.com

00

CN1

FEATURE ANALYSIS OF GENERALIZED DATA BASE MANAGEMENT SYSTEMS

by

CODASYL SYSTEMS COMMILIIE

MAY 1971

Chairman:

T. William 011e

Members:

Gordon C. Everest

James P. Fry

Mary E. Fuller
*Mary K. Hawes
*Anthony J. Kay
Henry C. Lefkovits

William C. McGee
A. Metaxides
Ronald M. Olson

*Martin Rich
Richard F. Schubert
Edgar H. Sibley
William H. Stieger
Alfred H. Vorliaus

Arla E. Weinert
John W. Young

*Resigned during 1970.

RCA Corporation

University of Minnesota
(and Auerbach Corporation)
University of Michigan
(formerly with MIME Corporation)
URS Data Sciences Company
Information Systems Leasing Corp.
Honeywell Information Systems
Honeywell Information Systems
(formerly with General Electric)
IBM Corporation
Bell Telephone Laboratories
Control Data Corporation
Esso Mathematics and Systems
B. F. Goodrich Chemical
University of Michigan
Chase Brass and Copper Company
MITRE Corporation
(formerly with SDC)
Naval Command Systems Support Activity
National Cash Register

This report is prepared by the CODASYL Systems Committee and
represents the viewpoint of its members, but not necessarily of
their respective affiliations. The report is authorized by the
CODASYL Executive Committee as - Systems Committee technical
report fo:r distribution outside CODASYL.

Copyright:

In accordance with CODASYL policy, this report may be reproduced or
translated in whole or in part. However, it is requested that a
mention be made of the source. If a major portion of the report is
used it is requested that mention be made of the authors and of their
affiliations in the above form.

www.manaraa.com

ADDITIONAL COPIES AVAILABLE
for $3.00 prepaid from:

Association for Computing Machinery
Order Department
1133 Avenue of the Americas
New York, NY 10026

In Europe Inquiries Should be Addressed to:

British Computer Society
29 Portland Place
London Wl, England

or:

IFIP Data Processing Group
StadhoudeL Skada 6
Amsterdam, Netherlands

2

www.manaraa.com

ACKNOWLEDGpmmr

The work in preparing this report was performed by the members
of the CODASYL Systems Committee whose names are listed on the
front page. These individuals were supported by their affiliations,
who made members' time available and who sponsored all trave3 and
meeting expenses.

In addition to the members of the committee, a number of other
individuals assisted the committee by reviewing drafts and
answering questions on specific points. Appreciation is expressed
by the Committee to the following for their assistance.

William B. Helgeson
Ronald McDowell
Martin J. Rich
Joseph E. Sciulli & colleagues
Robert W. Taylor
John Thurlow
Thomas Work

Honeywell Information Systems Inc.
Chevrolet Engineering Center
ESSO Mathematics & Systems, Inc.
Western Electric
University of Michigan
ESSO Mathematics & Systems, Inc.
International Business Machines

DISCLAIMER

The Systems Committee has made every attempt to ensure the accuracy
of the information contained in the systems descriptions. Readers
are requested to refer to the originator's source documentation to
which reference is given in chapter 1. The Systems Committee
disclaims responsibility for any inadvertent accuracies or mis-
interpretations.

INFORMATION

Information regarding the further activities of the CODASYL Systems
Committee can be obtained from the following:

Chairman, CODASYL Systems Committee
P.O. Box 124
Monroeville, Pennsylvania 15146

4

3

www.manaraa.com

TABLE OF CONTENTS
Page

INTRODUCTION I- 1

I.1 Background I- 1
1.2 Systems Committee goals I- 1
1.3 Decisions leading to preparation of current report I- 2
1.4 Functions of current report I- 3
1.5 Current state of the art I- 3

1.5.1 Host language capabilities I- 5.

1.5.2 Self-contained capabilities I- 6
1.5.3 Inter-system capabilities I- 7
1.5.4 Data independence and binding I- 8
1.5.5 User interface I- 8
1.5.6 Levels of user , I- 9

1.6 Technical problems facing designers I- 9
1.6.1 Existing storage structures I-10

1.6.2 More complex data structures I-10
1.6.3 Self-contained operations on network structures I-11
1.6.4 Non-programmer interaction I-11
1.6.5 Unification of both approaches 1-12

1.7 Use of COBOL as a basis for further development 1-12
1.7.1 Data structure capabilities 1-13

1.7.2 Host language capabilities I-14
1.7.3 Self-contained capabilities I-14

1.8 Features of generalized data base management systems 1-15
1.8.1 General summary 1-16
1.8.2 Data structure 1-16
1.8.3 Data definition 1-16
1.8.4 Interrogation 1-16
1.8.5 Update 1-17
1.8.6 Creation 1-17
1.8.7 Programmer facilities 1-18
1.8.3 Data administrator functions 1-18
1.8.9 Storage structure 1-18
1.8.10 Operational environment 1-19

1.9 Report conventions 1-19

1.9.1 Terminology 1-19
1.9.2 Language syntax specifications 1-19

1.9.3 Abbreviations 1-20

5
5

www.manaraa.com

TABLE OF CONTENTS (continued)

Rae,.

I.10 Systems Committee role in future development 1-20

References I-21

1. GENERAL SUMMARY 1- 1

1.1 Identification 1- 1

1.1.1 Self-contained 1- 1

1.1.2 Host language 1- 2

1.2 Data structure class 1- 4

1.3 Generalized processes provided 1- 6

1.4 Language type 1- 7

1.5 Storage structure class 1-10

1.6 System environment 1-11

1.7 System summaries 1-13

1.7.1 Underlying philosophy 1-13

1.7.2 System descriptions 1-17

1.8 Selected bibliography 1-29

2. DATA STRUCTURES 2- 1

2.1 Items 2- 5

2.1.1 Item types 2- 5

2.1.1.1 Numeric item types 2- 7

2.1.1.2 String item types 2- 9

2.1.1.3 Other item types 2- 9

2.1.2 Item schema attributes 2-12

2.1.2.1 Names 2-12

2.1.2.2 Value class attributes 2-14

2.1.2.3 Other item schema attributes 2-16

2.1.3 Other item attributes 2-20

2.2 Groups 2-22

2.2.1 Group types 2-27

2.2.2 Group composition 2-31

2.2.2.' Schema composition 2-31

2.2.2.2 Instance composition 2-33

2.2.3 Group attributes 2-34

2.2.3.1 Names 2-34

2.2.3.2 Other schema attributes 2-34

2.2.3.3 Non-schema attributes 2-39

6

www.manaraa.com

TABLE OF CONTENTS (continued)

Page

2.3 Group relations 2-40
2.3.1 Group relation types 2-47
2.3.2 Group relation composition 2-49

2.3.2.1 Schema composition. 2-49
2.3.2.2 Instance composition 2-50

2.3.3 Group relation attributes 2-50
2.3.3.1 Names 2-50
2.3.3.2 Other schema attributes 2-51
2.3.3.3 Nonschema attributes 2-52

2.4 Entries 2-52
2.4.1 Entry types 2-59
2.4.2 Entry composition 2-59

2.4.2.1 Schema composition 2-59
2.4.2.2 Instance composition 2-62

2.4.3 Entry attributes 2-64
2.4.3.1 Names 2-64
2.4.3.2 Other schema attributes 2-64
2.4.3.3 Non-schema attributes 2-65

2.5 Files 2-66
2.5.1 File types 2-67
2.5.2 File composition 2-67

2.5.2.1 Schema composition 2-67
2.5.2.2 Instance composition 2-73

2.5.3 File attributes 2-74
2.5.3.1 Names 2-74
2.5.3.2 Other schema attributes 2-74
2.5.3.3 Non-schema attributes 2-76

2.6 Data base 2-77
2.6.1 Data base composition 2-77

2.7 Data structure generalization 2-78

3. DATA DEFINITION 3-'1

3.1 Context of the data definition 3- 1
3.2 Item schema definition 3- 5
3.3 Group schema definition 3-17
3.4 Group relation schema definition 3-26
3.5 Entry schema definition 3-30
3.6 File schema definition 3-33
3.7 Data base schema definition 3-41

7

www.manaraa.com

TABLE OF CONTENTS (continued)

Page

3.8 Processing and storage of the data definition 3-41

3.9 Revision of the data definition 3-44
3.10 Auxiliary data structure definition 3-48

3.11 Sample data definitions 3-58

4. INTERROGATION FUNCTION 4-

4.1 Characteristics of premise action relationship 4- 5
4.1.1 Procedural languag? actions 4- 7
4.1.2 Non-procedural language actions 4- 8

4.2 Identifying applicability of interrogation 4-10
4.3 Conditional expressions 4-11

4.3.1 Simple conditions 4-12
4.3.1.1 Basic relational operators 4-13
4.3.1.2 Permitted form of subject in simple

relational conditions 4-14
4.3.1.3 Restrictions on the use of relational

operators 4-14
4.3.1.4 Permitted reference quantities in simple

relational conditions 4-15
4.3.1.5 String matching conditions 4-17
4.3.1.6 Other relational operators 4-18
4.3.1.7 Existence conditions 4-19

4.3.2 Compound conditions 4-20
4.3.2.1 Logical connectors 4-21
4.3.2.2 Precedence rule for logical connectors 4-22

4.3.2.3 Levels of nesting 4-22
4.3.2.4 Compound conditions on the same item 4-23
4.3.2.5 Logically connected conditions on different

items 4-25
4.3.2.6 Logically connected conditions on several

items but with same reference quantity 4-26

4.4 Conditions on groups 4-27
4.5 Identification of conditional expression 4-30

4.6 Data extraction 4-31
4.6.1 Generalized extraction features 4-32
4.6.2 Multiple outputs per conditional expression 4-33

4.6.3 Limit of output volume 4-34

4.6.4 Sorting 4-36

4.7 Item level extraction 4-38
4.7.1 Item schema attributes 4-38
4.7.2 Item instance attributes 4-39
4.7.3 Item value decoding 4-40
4.7.4 Item level derived data 4-41

8

8

www.manaraa.com

TABLE OF CONTENTS (continued)

Page

4.8 Group level extraction 4-42
4.8,1 Group level derived data 4-44

4.9 Entry level extraction 4-44
4.9,1 Entry level derived data 4-45

4.10 File level extraction 4-46

4.10.1 File level derived data 4-46

4.10.2 Cross entry counting , 4-49

4.11 Report formatting facilities 4-51
4.11.1 Item level editing 4-53
4.11.2 Report body formatting 4-54

411.2.1 Item level placement 4-54

4.11.2.2 Report blocks 4-56

4.11.2.3 Page size control 4-58

4.11,3 Titles 4-60

4.11.:' Heading lines and footing lines 4-62

4.11.5 Other embedded literals 4-64

4.11.6 Control break facilities 4-65

4.12 Interrogating the stored data definition 4-67

4.13 Mechanized files 4-68

4.13.1 Files for system's use 4-69

4.13.2 Files for use outside system 4-70

5. UPDATE 5- 1

5.1 User update control. 5- 2

5.2 Data description 5- 6

5.2.1 Transaction definition 5- 6
5.2.2 Filers used 5-10

5.3 Transaction program definition 5-12

5.3.1 Transaction program format 5-12
5.3.2 Data mapping . 5-14

5.3.3 User control over data access 5-15

5.3.4 Update data selection 5-18

5.3.5 Data base changes 5-21

5.3.5.1 Entry level changes 5-25

5.3.5.2 Group level changes 5-28

5.3.5.3 Item level changes 5-30

5.3.6 Transaction validation 5-34

5.3.7 Transaction editing and transformation 5-36

5.3.8 Other user specified features 5-38

9

www.manaraa.com

TABLE OF CONTENTS (continued)

Ewe_

5.4 Auxiliary update functions 5-39
5.4.1 Maintenance of item attributes 5-39
5.4.2 Maintenance of file storage 5-40
5.4.3 Ordering of transactions and files 5-41
5.4.4 Maintenance of system integrity 5-42

6. CREATION FUNCTIONS 6- 1

6.1 Creation action cycle 6- 3
6.2 Definition of data and storage structure of input files 6- 7
6.3 Allocation of media space 6- 9
6.4 Provision of the input data file 6-11
6.5 Population of the file 6-13

6.5.1 Entry, group and item validation 6-16
6.5.2 Transformations on data 6-18

6.6 Monitoring creation functions 6-20

7. PROGRAMMING FACILITIES 7- 1

7.1 Summary of data manipulation language statements 7- 2
7.2 Modes of processing 7- 4

7.2.1 Input, output, and update modes 7- 4
7.2.2 Random and sequential modes 7- 5

7.3 Method of interface 7- 8

7.3.1 Invocation of facilities from the host language - 8
7.3.2 Language form 7-11

7.3.3 Addressable data structures 7-12

7.4 Program-system communication 7-14
7.4.1 Currency 7-16
7.4.2 User working area 7-20
7.4.3 Error and exception conditions 7-25
7.4.4 Selection criteria 7-30
7.4.5 Security clearance and integrity 7-34

7.5 Data manipulation language statements 7-38
7.5.1 Control statements 7-38

7.5.1.1 Open 7-38
7.5.1.2 Close 7-42
7.5.1.3 Conditional 7-44

7.5.2 Data retrieval 7-45

7.5.2.1 Locate 7-45

7.5.2.2 Locate and access 7-51

7.5.2.3 Simple access 7-55
7.5.2.4 Hold and reprocess 7-57
7.5.2.5 Currency reset 7-58

10
10

www.manaraa.com

TABLE OF CONTENTS (continued)

Page

7.5.3 Data modification statements 7-61
7.5.3.1 Add 7-61
7.5.3.2 Change 7-65

7.5.3.3 Delete. 7-68

7.5.3.4 Reorder 7-71
7.5.3,5 Reorganize 7-74

7.5.4 Special purpose statements 7-74
7.5.4.1 Table handling 7-75
7.5.4.2 Communications 7-77

7.6 Facilities for system programmers 7-79
7.6.1 Multiple levels of interface 7-79
7.6.2 Accessing the stored data definition 7-80
1.6.3 Handling a generalized auxiliary data definition 7-81

8. DATA ADMINISTRATION FUNCTIONS 8- 1

8.1 Systems administrator functions 8- 4
8.2 Data administrator initiated process affecting other users 8- 5

8.2.1 Assignment of pass keys 8- 6
8.2.2 Specifying the logging of modifications to the

data base 8- 7
8.2.3 Specifying the logging of transactions 8- 9
8.2.4 Specifying an audit trail 8-10
8.2.5 Storage of programs acting on the data base 8-11
8.2.6 Control over scheduling algorithm 8-13

9. STORAGE STRUCTURE

9.1 Techniques in item and group level storage 9- 1
9.1.1 Item level storage 9- 4
9.1.2 Item storage in groups and entries 9- 6

9.2 Techniques in entry and file level storage 9- 8

9.2.1 Media and devices 9- 9
9.2.2 Storage structure organization 9- 9

9.2.2.1 Direct storage structure organization 9-10
9.2.2.2 Relational storage structure organization 9-11

9.2.3 Indexes 9-13

9.2.4 Relation of records to logic elements 9-14

9.3 Entry and file level structure 9-15
9.4 Data base level storage structure 9-26
9.5 User control of storage structure 9-27

11
11

www.manaraa.com

TABLE OF CONTENTS (continued)

Page

10. OPERATIONAL ENVIRONMENT 10 -.1

10.1 Hardware environment 10 -.1

10.1.1 Processor, main memory, and special requirements 10- 2
10.1.2 Data base storage media 10- 3
10.1.3 Terminal equipment 10- 3

10.2 Software environment 10- 3
10.2.1 Operating environment 10- 6
10.2.2 Concurrency of operations 10- 9

10.2.2.1 Concurrency during file creation 10- 9
10.2.2.2 Concurrency with single copy 10-10
10.2.2.3 Concurrency with multiple copies 10-12

10.2.3 Modes of system use 10-13
10.2.4 Software facility interfaces 10-14

10.2.4.1 Operating system 10-14
10.2.4.2 Communications subsystem 10-16
10.2.4.3 Other software 10-20

10.2.5 Procedure preparation, modification, and submission. 10-20

10.3 Modes of the operation by data base management functions 10-22
10.3.1 Batch mode 10-23
10.3.2 Interactive mode 10-23
10.3.3 Transaction mode 10-23

10.4 System transferability 10-26

APPENDIX - INDEX A -.1

12

12

www.manaraa.com

INTRODUCTION

I.1 Background

In May 1969, the CODASYL Systems Committee completed a report entitled
"A Survey of Generalized Data Base Management Systems" [1]. This

report contained a list of the features felt to be typical of such
systems. For each of nine systems, a description was written in the
format of the feature list. The report consisted of the feature list
and nine separate chapters, one for each system described. The
report was made available to attendees at the 10th Anniversary meeting
of CODASYL (Conference on Data Systems Languages) held in Washington
on 27 and 28 May 1969. The ACM assisted the Systems Committee by
printing and selling copies of the report subsequent to the meeting.

1.2 Systems Committee goals

The next step in the Systems Committee's work was to evaluate how
to pursue its goal of developing the specification of the common
language and functions for a unified data base system. The word
"common" is used to describe CODASYL developments in preference to
"standard", because the development of standard systems is the
responsibility of ANSI (American National Standards Institute).
Hopefully, the common system would, after a number of implementations
and a period of successful use, be submitted to ANSI as a candidate
for standardization. This would then follow a path similar to that
of COBOL which was developed by CODASYL between 1959 and 1961, sub-
mitted to ANSI (then ASA) for standardization in 1964 and accepted
as an ANSI standard in 1966.

The committee, in planning its first step towards the goal, examined
its own survey report to see how its usefulness as a basis for further
work could be improved. For working purposes, the report was arranged
by the committee so that each feature description was immediately
followed by the nine narrative descriptions of that feature for all
systems. The report was then divided into ten parts (corresponding
to major sections of the feature list) for further detailed study by
the members. It was agreed that a more comprehensive and complete
feature list was required to reflect capabilities mentioned in some
system descriptions which were not already included in the feature
list. It was also agreed that the revised feature list should be
validated by expanding the existing narrative on each feature to
describe more completely the way a capability is handled in each system.

[1] References are at the end of this introduction.

13

www.manaraa.com

Dr.2

The result of this work is a second technical report of which this
introduction is the first chapter. However, it is the purpose of
this introduction to serve not only as a prologue to the main report
but also as a free-standing document in its awn right for formal
and separate technical publication. It r'_flects the opinions of
the CODASYL Systems Committee as a group. Many of the issues covered
in this introduction are those which the committee has discussed at
length and on which a divided viewpoint must be recorded. This
report attempts to indicate both sides of the picture where
appropriate.

1.3 Decisions leading to preparation of current report

The current report on generalized data base management systems has
been prepared and is being made available to the computer community
only after considerable discussion and two somewhat divided votes
on its content. Most members felt that the feature list used in
the May 1969 report was not an adequate basis on which to design
the common system which has been the committee's coal for many
years. There was also widespread agreement tha'; a more detailed
feature list must be prepared based on a careful study of the re-
sequenced form of the May 1969 report.

The issue which proved to be debatable was whether the committee
should again publish information about specific commercial systems
in its report. There was no question that such systems should be
studied carefully to provide the necessary technical insight into
the value and role of the various features; however, the merit of
preparing and editing specific information about each system was
open to discussion. On the one hand it was agreed that the Systems
Committee should not give the impression that it was supplying a
survey service for the computer community. On the other hand it
was felt that a technical report containing only a feature list,
with no tie-in to developed systems, would be too abstract and that
inclusion of systems descriptions would give the report more
technical content, and would focus more attention on the increasingly
important role of generalized data base management systems. An
important ar7,-ament in favor of including the systems descriptions
is the need to give a clearer focus on the differences among various
systems.

The merit of including JOD COBOL [2] along with generalized data
base management systems in the committee's report has been subject
to some debate. COBOL does offer a data structure in the sense of
the report, and it also has many of the features covered in the other
sections. However it is not generally regarded as a generalized
data base management system. The argument in favor of including it
is that it provides a capability base against which to assess other
systems. Many features provided in host language systems and self-
contained systems do exist in COBOL.

114

www.manaraa.com

It should be pointed out that the maintenance and development of
COBOL is in the purview of tAe CODASYL Programming Language Committee.

1.4 Functions of current report

The latest report attempts to be more tutorial than its predecessor
in the narrative description of each feature. Each feature
description is then followed by either narrative information
covering the ten systems or by a ,table for all systems. The
systems covered in the report are CODASYL.COBOL, as defined in the
Journal of Development [?] the'Data Base Task Group's proposal [3]
IBM's GIS, GE's IDS 1 IBM's IMS, Informaticli MARK IV, IBM's FFS
(also known as NIPS), Auerbach and Western Electric's SC-1, SDC's
TDMS and RCA's UL/1.

The tabular approach is preferred in a minority of situations when
the feature is sufficiently clearly identified across all systems
so that the table does not require extensive footnotes to convey
system' capability. Where the narrative approach is used an attempt
has been made to preserve a consistent level of detail across the
systems included. This was lacking in the previous report because.
of the way in which it was prepared. However it should be pointed
out that the format and mode of preparation of the previous report
lead to a more cohesive total description of each of the systems
included. If the present report were again resequenced to collect
all narrative on an individual system together in one place, the
resulting description of the system would not be as informative
about that particular system as in the former report.

The function of the present report is to define more completely the
features offered in present day systems. In this respect it is an
extension of its predecessor. However it is intended that the
feature list in the present report will provide insight and direction
in developing design objectives for a common system, and that sub-
sequently the report will be used to develop the specification of
the common language and functions for a unified data base system.

1.5 Current state of the art

Generalized data base management systems are developed and marketed
today under various generic names. Such appellations as data
management system, generalized information retrieval system, infor-
mation management system, and file management system are the main
terms in use. The more elementary systems search a sequential file
having simple record structures and provide only rudimentary report
formatting facilities. More elaborate systems handle several files
via indexes or links and function in an on-line mode. The number
of ways in which these systems may vary is at least as numerous as
the number of distinct features listed in the revised survey, and
a user trying to select among the enormous variety of systems
available faces a difficult evaluation problem.

15
15

www.manaraa.com

Y.4

The most significant point point observed in the course of the
Systems Committee's study is the difference between host language
capabilities and self-contained capabilities. The former are
typically provided in systems such as IDS and IMS. The self-
contained capabilities are found in systems such as GIS, MARK IV,
NIES/FFS, TDMS, and UL/1. Some members of the committee find it
convenient to refer to two classes of systems - host language
systems and self-contained systems. There is a divided opinion on
the merit of this simple taxonomy, since some host language systems
are now offering self-contained capabilities and some self-contained
systems perform functions in a way more oriented to programmer use
than to use by the non-programmer.

The difference between the two classes is one which is hard to
delineate. The committee is generally agreed that the difference
between system classes is one which ought to disappear and is in
the process of doing so. There remains a difference between the
two classes of capability which on the facilities level is easier
to identify.

The host language capabilities may be identified simply as new
tools for the application programmer. In this sense, they are
embedded in a host language which is usually COBOL or PL/I. In
addition, the facilities may be used by the assembly language
programmer.

The self-contained capabilities are tools for the non-programmer
as well as for the programmer. They are self-contained in the
sense that they usually have no language connection with any
procedural language. Procedural language in this report is used
synonymously with procedure oriented language.

Before discussing each class of capability in more detail, it is
important to note that many of the systems developed provide a
data structure more powerful than that in COBOL. The committee
concludes that such data structures are indeed required by the
computer community today.

The way in which the data structure has been enhanced differs
between the two classes, and also quite extensively within the
systems providing principally host language capabilities.

Host language systems have either offered a more extensive
hierarchical structure than that usually implemented for COBOL or
else provide for the expression of network relationships among
records. These subsume the hierarchical relationships more
frequently provided.

Self-contained systems, at least those studied in depth by the
committee, also provide for a more extensive hierarchical data
structure than that of COBOL. However the extensions have usually
been on the intra-record level and have included facilities for
handling many levels of nesting and also variable length data
items.

16
16

www.manaraa.com

1-5

1.5.1 Host language capabilities

It is important to attempt to clarify the other differences between
the two classes of capability. A system with host language capability
is one which is built upon the facilities of a procedural language
such as COBOL, PO or even basic assembly language; "built upon" in
this context must not be confused with "built with."

To support the handling of the more complex structures, discussed
in the previous section, facilities are provided to permit the user
to initiate data transfers between the data base stored on low
speed direct access memory, and high speed memory. Usually the
implementation of the system embodies capability to avoid unnecessary
physical transfers of data between memory levels, although the user
of the system need not be aware of this.

The way chosen to interface the host language capabilities with the
host language is usually through the CALL statement in the latter,
although in some cases the host language has been enhanced to
provide a neater interface. In general, however, the host language
and its associated compiler have been treated as inviolate.

It is important to note that the user of a host language system is
still to be considered an applications programmer in the sense that
he writes a set of statements to be executed sequentially as in
COBOL. He exercises almost the same degree of procedural control over
the machine in his program as if he were programming in COBOL, except
that the facilities of the data base system handle his data transfers
once he has initiated them. He has control over the logical flow of
his program and may mix conditional statements, action statements and
loops virtually as he wishes. The enhanced. data structure allows him
a facility in handling certain data structures more completely than
he would be able to in the host language alone. He is, of course,
insulated from the physical storage structure, although required to
assign a media type and define the file level structure for data base
storage.

The data definition may be split into two levels. For example, the
definition of items in records is performed in the host language as
if no further system were involved. The definition of inter-record
relationships is then performed in the facilities of the data base
management system. In several host language systems these inter-
record relationships are translated into an internal table or
directory which the object program interprets at execution time.
This interpretation gives a measure of data independence, a feature
to be discussed later in this report.

i7
17

www.manaraa.com

1-6

1.5.2 Self-contained capabilities

The self-contained capabilities have developed from different
origins and are aimed at handling a certain set of data base
functions in such a way that conventional procedural programming
is not required. A function in this set is always a high level
one which might be programmed many times and which experience
over the years has shown can be generalized - namely, programmed
once with a high level language provided to express the various
parameters of the function. The capability to nix conditions and
actions as the programmer wishes is replaced by a pre-programmed
or built-in processing algorithm so that the amount of writing
required by the user is minimized. For this reason a system with
such capabilities is sometimes called non-procedural, to indicate
that the user does not exercise control over the sequence of
detailed steps the system uses to process his requirements. Most
significantly, he has no control over the sequence in which data
are examined and moved from one level of memory to another or even
from one area to another within high speed memory.

An important feature of systems offering self-contained capabilities
is that the definitions of the data (on item, record and file
levels) reside in some encoded form with the data. In fact, it
may be stored in either a catalogue of several such data definitions
or with the data file (namely, on the same volume).

The most commonly provided self-contained capabilities identified
by the Systems Committee are the functions of interrogation and
update. Interrogation is here defined to subsume the processes of
data selection, sorting and report formatting. The interrogation
function is one which has been very frequently generalized and has
its origins in assembly language level report generators. The

language of the interrogation function is sometimes called a
generalized query language. Systems providing this kind of function
are also referred to as generalized information retrieval systems.

The update function has been less frequently generalized, but any
basically self-contained system which offers a data structure
(within the file and record levels) more extensive than that of
COBOL must also provide an update function, unless the files are
to be updated by assembly language programs.

When either of the functions of interrogation and update are
invoked, it is not necessary for the user to enter the data
definition. This must have already been done, and the interrogation
and update functions use the stored data definitions when they are
executed.

Two other self-contained capabilities are identified as the
functions of file creation and restructuring. An important
function which must precede file creation is the process of
translating the user expressed data definition into its stored form

18
18

www.manaraa.com

I -7

as mentioned above. File creation then includes expressing
validation condit'ons which data entering the file must satisfy.
File creation has the p..incipa1 function of building the
initial instance of the file, although in most cases this is
essentially a use of the update function, discussed above, to
update a null file.

Restructuring is the least frequently generalized function. It
is basically a mapping of the data file performed by modifying
the stored data definition and -Lica mapping the records accordingly.

The disadvantage of systems offering only self-contained capabil-
ities today is the size of the set of applications which they can
handle. For those applications 'within the set, the self-contained
systems offer considerably reduced set-up time and a vast reduction
in the time required to prepare a new interrogation or update to
the data base. In this respect, such systems can make major
economies in the use of people's time and can also give a more
rapid satisfaction of ad hoc information requirements. It is
generally held that machine time spent using self-contained
capabilities is longer than that which might be spent by a
specially tailored program, depending on implementation.

1.5.3 Inter-system capabilities

Perhaps the biggest problem in the industry today is that the two
approaches to data base management are not only incompatible with
each other, but also are often data incompatible with the con-
ventional procedural languages. This is primarily because both
kinds of system provide data structures more complex than the
procedural languages. Since the data structure enhancements vary
considerably, it follows that systems within each class are also
data incompatible with other systems in the same class. There are
however some self-contained systems which are designed to operate
only on the limited data structures of data files already being
handled with widely used procedural languages.

Data compatibility is a problem which is steadily increasing in
magnitude, and it is one which the two approaches to data base
management are in effect making worse. Data compatibility across
two software systems is a function of several levels of data
storage. It is concerned with how data items are stored. within a
record, how logical records are Stored in a physical block, how
physical blocks are identified as belonging to the same file and
how two or more files are stored on the same direct access volume.
With further techniques such as primary and secondary indexes and
inter-record pointers introduced, the likelihood of data in-
compatibility increases greatly. In fact, a COBOL source program
can be transferred from one machine to another more easily than the
data files on which the program operates.

19
19

www.manaraa.com

1-8

The problem of data transferability is one which was debated at
some length during the 10th Anniversary meeting of CODASYI held
in May 1969. A data definition language was proposed as a solut-
ion to the problem, and a task group of the Systems Committee is
currently studying storage structure definition languages.

I.5.4 Data independence and binding

Data independence is a capability frequently identified as required
for data base management systems. The term "data independence"
remains to achieve a widely accepted rigorous definition. It can
be taken to imply some degree of insulation between a program and
the data with which the program interacts. Depending on the
extent of that insulation, programs can accommodate varying degrees
of change in the definition and structure of that data, without it
being necessary to modify the program or possibly recompile it.

Data independence can be achieved only by use of a stored data
definition. If the program accesses (or interprets) this data
definition at execution time in order to be able to locate items
in records and possibly records in files, then this may be called
execution time binding. The conventional approach to programming
has evolved around binding the data to the program at compile time.

It should be noted that some host language systems offer a mixed
approach to binding. The item level binding occurs at compile
time but the record level binding occurs at execution time. This
means that the tables or directories representing the inter-record
level data definition (but not the intra-record level) must be
accessible at execution time.

The self-contained systems rely heavily on the stored data
definition. This does not imply an exclusive use of execution
time binding, since object code may be generated, which implies
that the data definitions are bound into that code at the time the
statements in the interrogation or update are translated.

In summary, both host language systems and self - contained systems
may in theory offer either approach (or even both approaches) to
binding. By their nature the host language systems in use today
have tended to offer the mixed approach described above, although
there is no reason to adhere to this in future developments.

1.5.5 User interface

The next facet of generalized data base management systems which
should be mentioned is the user interface or, more explicitly, the
language which the user has to learn in order to use these systems.
In the host language systems, the applications programmer must
learn the enhancements which may be new elements of the host
language, or more likely a set of parameters to the CALL statements.

20

20

www.manaraa.com

I-9

In the self-contained systems, a complete new language is offered.
If this is used by the non-programmer for whom it is intended, then
the numerous inconsistencies with procedural languages are not
embarassing. To the individual with a smattering of COBOL, any
'use of the self-contained function will normally involve less
writing than he would otherwise have to do in COBOL. This situation
is due to the fact that the file processing algorithm is built
into the function he is invoking and does not have to be spelled
cut.

pith many of the more pmerrul self-contained systems available
today it is clear that little attempt has been made to stay close
to the statement forms provided in COBOL, even where it is feasible
to do so.

1.5.6 Levels of user

Four levels of user may be identified - data administrator,
applications programmer, non-programmer and parametric user.

Both classes of systems identify the role of an individual called
the data administrator. In a user environment in which an
important data base is kept on-line for access by several
individuals, there must be a single individual who carries
responsibility for many facets of its use. Certainly he should
be responsible for its initial creation and for instituting any
structural modifications which may be required. In identifying
specific features of the generalized data base management systems
as restricted to privileged use by one individual, the Systems
Committee is expressing a collective opinion on what such features
should be. The use of the system features provided for the data
administrator may call for considerably different levels of
expertise in the different systems.

The next level of user is the applications programmer for whom the
host language capabilities are specifically provided. He is well
identified in terms of current practices. However, when programming
to operate on data which is stored on-line under the management
of a generalized data base management system, he may have to
accept constraints and disciplines which have been noticeably
absent in previous methods for handling business applications.

A third level of user is the non-programmer for lelom the self-
contained capabilities have been designed. Finally, is the
other non-programmer level which is of importance only in an
on-line environment. He may be called the parametric user,
since his interface with the data base is one of invoking pre-
defined transactions and possibly providing values to any
parameters they may have.

1.6 Technical problems facing designers

There are many technical issues facing future designers of
generalized data base management systems. There exists a broad

21
21

www.manaraa.com

1-10

spectrum of systems which could, in theory, provide them with a
wealth of input. Unfortunately, with the tremendous investment
in software development taking place today, and due to the
unprecedented rate at which computer science is evolving compared
with other more mature disciplines, it is very difficult to
recognize the mistakes of others - let alone learn from them.

One of the reasons that the Systems Committee has spent a period
of three years largely devoted to the study of existing generalized
data base management systems, is to try to chart a path for the
future of such systems. Although it is not the purpose of this
document to spell out detailed guidelines for future systems, a
number of pointers can be given.

1.6.1 Existing storage structures

First, there is an enormous investment today in stored data.
While it is virtually impossible to develop a system which could
process all such data, it should be one of the functions of a
new system to act on the commonest storage structures in use.
This could possibly be by means of run-time interpretive access
to the data. This approach is preferable if the data is to be
accessed more frequently by some other system with which it may
have been bound at compile time for more efficient access. If
the future accesses are considered to be more important than those
in the past, then a one-time conversion of the data may be more
efficient. The problem of facilities for accessing commonly used
storage structures is a significant one for future designers.

1.6.2 More complex data structures

It is apparent that more complex data structures must be provided.
Certain applications require intra-record and inter-record
structures more complex than those currently provided in COBOL.
The Data Base Task Group (DBTG) of the CODASYL Programming
Language Committee released a report [2] in October 1969 proposing
a data structure for storing records in a file which permits the
user to represent network or graph structures. This report
has been considerably amplified since October 1969 and a revised
report should be available in June 1971.

The DBTG proposal consists of two parts. The first is called the
DDL, Data Definition Language, in which such network structures
may be defined. The second is the DML, Data Manipulation Language,
which is used to operate on the data records stored in such
structures.

The DBTG considers its separation of the DDL and DML to be the
cornerstone of its approach, in that the separation allows data
bases described by the DDL to be indepem&nt of the language or
languages used for processing the data. The DML proposed in the
October 1969 report augments COBOL and thus the Systems Committee

22
22

www.manaraa.com

considers the DBTG proposal as a host language system and has
included it as one of the systems in its new report. The DBTG
anticipates the DML will be used to augment other languages
such as FORTRAN and PL/1 and. that, in the future, self-contained
languages will also be developed to operate on data bases de-
scribed by the proposed DDL.

1.6.3 Self-contained operations on network structures

It is significant that the self-contained systems typically
operate only on purely hierarchical structures and not on the
more complex network structures. The reason for this is that
the former are more widely understood and used. It is debabable
what percentage of applications in fact call for a network
capability. However, these are certainly numerous enough and
important enough to justify the introduction of network structures
and more and better understanding must lead to a more widespread
use. Presumably, when such techniques have been as widely used
as simple sequential files are today, it should be possible to
define higher level functions, such as those in the self-contained
systems,to operate on these structures.

1.6.4. Non programmer interaction

Another major issue facing the designers of generalized data
base management systems stems from the increased interest in
allowing non-programmer users to interact directly with a large
shared data base. This interaction is generally on-line from
a terminal (for which case the use of the ill-defined term
"time sharing" should be avoided), but may be by means of batch
input and output. There are two classes to be considered here.

The first is the parametric user referred to earlier, who invokes
a pre-stored procedure and possibly provides certain data values
to that procedure. One such occurrence - invocation and input -
is called a transaction. The term transaction program is used
for the pre-stored procedure, and transaction input for the data
itself. The function accomplished by a transaction program may
be either interrogation or updating; the usage of the term in
banking and accounting is generally limited to the latter. The
parametric user has probably not had any hand in preparing the
transaction program and does not know the language in which it has
been written. His understanding is limited to the types of
transactions which he has been taught haw to invoke, and the
meaning of any output, including error messages, bhey may
generate.

Some host language data base systems provide on-line capability
to handle this kind of user. When the volume of transactions
is high, special transaction management schemes are required.
Such schemes are quite widely used in environments where every-
thing is tailored to the specific application, such as airline

23
23

www.manaraa.com

1-12

reservation and credit checking. The emphasis is on a very high
volume of transactions with possible priority schemes for
(111:::uing and routing of the transactions. Such capability, while
sometimes subsumed under the name of the data base system, is in
fact an area of expertise in its own right and has not been
examined closely by the Systems Committee.

The other class of non-programmer user is the one who formulates
his own query (or update) and hence needs to understand the
language in which he must do this. Be may be specifying his query
in a truly interactive mode and carrying on a dialogue with the
syntax processing part of the system. While making his query
syntactically correct for the data files and their indexes, lae may
at the same time narrow his question to the one he wishes to ask
by a browsing process.

Since the self-contained systems have a clear orientation towards
facilitating the asking of ad hoc questions, this class of systems
is having more impact on the individual who formulates his own query.

1.6.5 Unification of both auroaches

The development of a unified system to support the parametric user
and the non-programmer is a major problem facing the designers
of generalized data base management systems. It is important that
facilities for both users can operate on the same storage structures.
The present situation is one in which a predefinable transaction
program is normally prepared in a host language system but an ad hoc
question is posed using the facilities of a self-contained system.
In unifying these two approaches, it appears desirable to many members
of the committee that it should also be possible to prepare a trans-
action program using self-contained capabilities where these are
adequate and host language capabilities where the transaction program
needs facilities not available in the self-contained capabilities.

Not only is it important to allow the same data base to be created
and updated by several levels of languages, including the procedural
language and the non-procedural user oriented languages, but there
must be a separation of the data definition process from the languages
which operate on the data thereby defined. In other words, the data
definition must be common to a number of languages.

1.7 Use of COBOL as a basis for further developnt

The future role of COBOL in the data processing community is one
which has been of same concern to all CODASYL committees. Nobody
can deny that COBOL is currently the most widely used programming
language in the world today, a status which it seems to have

24.
24

www.manaraa.com

1-13

achieved in a period of less than a decade. However, when compared
with FORTRAN this fact reflects the predominant use of computers
for business application over scientific. When compared with PL/I,
this fact reflects COBOL's four or five year start in life.

On the other hand, COBOL has been frequently criticized on a number
of counts. Many say it is overloaded with features. Others critize
its verbosity, while still others allege greater elegance of both
PO and ALGOL.

It must be observed that programming languages used by man to
communicate with machines are becoming as difficult to replace by
legislation as the natural languages used by him to communicate
with his fellows. The English language has been widely criticized
on the basis of its illogical spelling, and its ambiguity, but it
is the most widely spoken language in the western world. From this
perspective it seems unlikely that COBOL will be successfully replaced
overnight, although it has to change to accommodate new requirements.
The CODASYL Programming Language Committee has been vigorously
pursuing its enhancement and examines hundreds of proposals every year.

1.7.1 Data structure capabilities

It is a debatable issue how far one can go in using COBOL as a base
for developing a common generalized data base management system.
The data structures of COBOL, while appropriate for many types of
batch processing, are felt by many to be too specialized for data
base applications. As mentioned earlier, the Data Base Task Group
has proposed a more general class of data structure in which network
or graph like structures may be defined. Such structures permit a
more direct representation of the complex relationships among the
entities of a business enterprise, and permit many different logical
orderings to be defined instead of the single ordering implied in a
hierarchical structure.

The development of many generalized data base management systems has
shown that enhancements to the data structure on the record and item
levels have been found necessary in addition to those proposed by
the DBTG. For example, many systems handle complex intra-record
structures to permit processing of variable length data items which
would typically be used for lengthy string data. Such enhancements
to the data structure also require string processing facilities to
permit character level operations on such data.

It must be pointed out that the capabilities offered by the DBTG's
proposed inter-record structures and many other systems intra-record
structures are not mutually exclusive in terms of the complexity of
data structure which can be represented. Inter-record level facilities
lead to smaller simpler records and more logical accesses; intra-
record level facilities lead to larger more complex records and fewer
accesses to larger units of data.

25
25

www.manaraa.com

1.7.2 Host language capabilities

The host language facilities provided. in a generalized data base
system could be provided by COBOL, suitably augumented to reflect
the system's data structure class as indicated in the preceding
section, and also with the Procedure Division enhanced to provide
other features needed for writing and executing programs in a shared
data environment. Such extensions to the Procedure Division have
been proposed by the DBTG in the form of the Data Manipulation
Language (WL).

As an alternative to such substantive additions to COBOL, it is
possible that COBOL and other existing procedural languages could,
be used for data base application without enhancement by permitting
the user to define mappings between data base structures and
application program structures. This approach would. allow the
applications programmer to select a data structure class appropriate
to his program, rather than one of a prescribed set of data structure
classes. This could simplify the task of obtaining agreement among
the developers of different programming languages for a consistent
set of enhancements. The DBTG's subschema concept provides this
approach to mapping, and a full application of the technique remains
to be fully explored.

1.7.3 Self-contained capabilities

There has been no cooperative industry-wide effort to date to
address self-contained capabilities. COBOL development and the
DBTG proposal have both addressed the provision of capabilities to
the applications programmers. The importance was stressed earlier
of allowing a data base to be interfaced by both host languages and
self-contained languages. The DBTG approach provides a DDL which
allows describing data independent4 Qf the languages used to process
that data. By permitting the referencihg. of external data definitions,
bo4-4) host languages and self-contained languges, existing and newly
developed, could interact with the same data base;... The specification
of self-contained languages suitable for this purpose' :remains to be
investigated.

Using COBOL as a basis, the provision of the typical self-containea.-,_
capabilities, such as interrogation and update, might be achieved
by identifying each as new divisions which could operate on the
data structure previously defined in the Data Division by a data
administrator. A stored representation of the data definition may
or may not be stored with the data. Such capabilities could be on
the level of those found in the self-contained systems, with all or
most,file processing built into the function. A similar approach was
suggested by the DBTG in its proposal which also indicates that the
Data Division should be enhanced to permit the naming of an external
data definition expressed in the DBTG's DDL. It could then be
possible for other languages outside COBOL and its non-procedural
facilities, to operate on the data base, as described previously in
the discussion of the DBTG work.

26

26

www.manaraa.com

1-15

1.8 Features of generalized data base management systems

This report covers the features of generalized data base management
systems in ten chapters. The ordering of these chapters was motivated
by a goal to present the feature analysis to an audience with a wide
range of backgrounds. Some readers may have no experience at all
with data base management systems while others may have either
implementation or user experience with one of the two principal
classes discussed in this introduction.

Following a general summary chapter, the next two deal with the
capabilities of the systems to represent data and then an analysis
of the language forms used to define the representable data structures.

An understanding of the data structure. concepts introduced in
Chapter 2 is important to an understanding of the following chapters
which deal with functions and facilities for acting on the data. Much
of the terminology used in the report is also developed in this chapter.

Chapters 4 and 5 analyze the self-contained functions of interrogation
and update and chapter 6 discusses the ways in which a file is
initially created. Chapter 4 and 5 follow the same general outline
as in the previous report although considerably extended and more
thorough.

There was considerable debate by the committee on how to present a
feature analysis which did justice to both self-contained and host
language systems. The idea of preparing two separate reports, one
for each class, was discussed but it was realized that there would
be major overlap and such an approach this might tend to promulgate
an undesirable dichotomy. Following the decision for a single report,
two chapters were added. Chapter 7 is a major new chapter containing
many additional features not included in the previous report. It

deals with facilities for the programming user which are provided
through a procedural programming language. Chapter 8 identifies the
functions ascribable to the data administrator. The capabilities of
the systems known to the various levels of user are therefore user-
oriented and covered in Chapters 2 to 8. This is in contrast to the
last two chapters which deals with systems oriented features which
are often transparent to the user. Chapter 9 analyzes the various
approaches to storage structures which is not necessarily known to
the user and chapter 10 outlines the operating environment under which
each implementation runs. This last chapter is not relevant to the
Data Base Task Group proposal, nor for JOD COBOL for which no
specific implementation is considered.

The following is an outline of each of the ten chapters:

27
27

www.manaraa.com

1-16

1.8.1 General summary

The opening chapter identifies a set of major features which convey
an idea of the class of a system. Its inclusion is chiefly to
provide identification, background and reference material tor each
system included in this report. This chapter also gives an overview
for each system and is the only one which deals with each system in
its entirety.

1.8.2 Data structure

Data structure is the view of the data as seen by the user of the
system and excluding any details of storage techniques used which
are covered in a separate chapter. An understanding of the data
structure of either kind of data base system is essential to a
good understanding of its capabilities. As indicated, most systems
have provided a data structure capability different from that of
COBOL although the differences are on different levels.

The Systems Committee found it important, even in its May 1969
report, to differentiate between the logical data structure which
the user of the system must understand, and the physical storage
structure which sometimes takes the role of the implementor's trade
secret,

The present report's features listed under data structure handle
hierarchical tree structures and the kind of network structures
in the Data Base Task Group's proposal.

Data structure levels are identified as item, group, group relation,
entry (record), file and data base. The definition of a data
structure is referred to throughout the report as a schema. It

is also possible in some systems to have several sub -schemas which
are subsets of the schema.

1.8.3 Data definition

This chapter is tied in closely with the previous one, the difference
being that this discusses the language and/or tabular formats used
to define a schema representable within the system's capability to
handle data structures. The definition of each level of data in
the data structure is discussed in the same sequence as it is in-
troduced in the previous chapter. This chapter also discusses the
entering of the data definition and the important concept of binding.

1.8.4 Interrogation

Interrogating a data base is a process of selecting and extracting
some part of the whole data base for display, usually in a hard
copy printed form. One section of the interrogation function
defines how the part is selected. The second part covers how
operations such as computation, sorting and formatting may be
performed on the selected part. The concept of interrogation is

't.

28

28

www.manaraa.com

1-17

an intrinsic self-contained capability. The implication is that
the user is able to formulate a query in the language of the system
without detailing the sequence of steps used to access the data
base and extract the information.

Availability of the interrogation function implies that a built-in
processing algorithm for the function is provided by the system.
In the simplest case, the processing algorithm is that of sequentially
searching a stored file, copying out records which satisfy some
conditional expression, and building up a report based on the data
contained in these records. There are many degrees of sophistication
even within the framework of the basic sequential search algorithm.
Other processing algorithms cause the file to be accessed to obtain
the required information, using various techniques which avoid a
sequential search.

1.8.5 Update

Updating a data base is a process of changing the value content of
Some part of the data base. It excludes restructuring of the data
which would cause a modification to the stored data definition.
Update is a process somewhat analogous to interrogation in that
some part of the data base must first be selected. In most self-
contained systems, the selection facilities are modelled on those
used in the interrogation function. However, once the part is
selected, it is changed in some defined way rather than displayed
in a report.

Update is intrinsically self-contained capability. It also implies
a built-in processing algorithm, but the possible ways of implementing
it are even more varied than for interrogation. In some systems,
both update and interrogation can be performed during the same
sequential pass of a file in the data base.

1.8.6 Creation

An important preliminary to the creation function is that of data
definition. It is necessary to provide a set of records to form
the initial instance of a file. Other functions are data validation,
security specification and control over media type. Data base
creation is considered to be one of the important functions for the
data administrator. Creation may imply a built-in processing
algorithm as for interrogation and update, or it may have to be
programmed in a conventional sense. In many cases it is a use of
the updating function applied to a null file.

There is no clear division here between self-contained systems and
host language systems. Some self-contained systems do require a
programmed approach to file creation. This implies that providing
the initial instance of the file is a function which has to be
programmed using facilities other than those provided by the system.

29
29

www.manaraa.com

1-18

1.8.7 Programmer facilities

Programmer functions are defined as host language capabilities.
They are functions upon which a programming user may call when
writing a program in a host language. The most important programmer
function statements are those which permit him to initiate data
transfers between the stored data base and high speed memory. Other
statements may be provided to allow him to issue file control state-
ments such as open, close and hold.

Any function considered to be in the domain of the data administrator,
even though its use may be on the level of the programmer, is not
considered in this chapter. Also, facilities in self-contained
systems for linking to procedural language functions (such as own
code hooks) are not considered in this chapter.

1.8.8 Data administrator functions

The data administrator is an individual responsible for a data base.
His role is identified to some extent in both host language and self-
contained systems. The important functions of data definition and
file creation are each covered in a separate chapter, but there are
other functions which are ascribed to the data administrator. Such
functions include monitoring system operation, preservation of system
integrity and security, and providing for restructuring the data base
to accommodate new record types or new items. Some of the data
administrator's functions may have to be performed with a programmer
level language in some systems. In this case the designation of a
function as an administrator function is subjective.

1.8.9 Storage structure

Each level of the data structure has a stored representation which
is referred to as the storage structure. The file level storage
structure defines how entries are stored in physical blocks to form
ne stored representation of the file. This level is often dictated
by the input/output control system, which in third generation
operating systems has been given the name of data management system.
File level storage structures include such techniques as indexed
sequential and other ways of storing a file and data about it to
facilitate access to its contents.

The entry level storage structure varies more widely among systems
and it defines how groups or items are represented in storage to
form the stored representation of an entry. Sometimes all entry
data is stored contiguously in low speed memory, but in some systems
groups are mapped into segments where the segments in an entry may
be stored in different locations in low speed memory. Finally item
level storage structure usually reflects the storage modes of the
machine although systems exercise different levels of control in
their data structure over the mapping of items into storage structure
formats.

30
30

www.manaraa.com

1-19

1.8.10 Operational environment

All systems which have been implemented have one or more operational
environments in which they function. This environment consists of
a hardware configuration and a software environment usually provided
by the operating system. This chapter is directly relevant to the
capabilities of the systems themselves only to the extent that it
explores the interface with other software components and the
concurrency with which the various functions can be executed.

1.9 Report conventions

1.9.1 Terminology

In carrying out an analysis of different systems the problem of
disparate terminology used remains a major problem. The terminology
base developed in the Systems Committee's previous report [1] appears
to be having some influence in the industry, but development of most
of the systems analyzed for this current report was fairly advanced
or oven completed by the time the previous report was released.

Where appropriate, the current report uses essentially the same
terminology as the previous one, with a few minor modifications.
However this report contains a far more detailed and broader discussion
of the features and capabilities of data base management systems, and
terms are frequently needed to convey concepts not identified at all
in the previous report. An attempt has been made to use widely used
terms where it is felt that these are indeed established and accepted.
The terminology of the CODASYL Journal of Development [2] of the Data
Base Task Group's proposal [3], have been adopted where applicable,
although there is some deviation in the use of certain terms, for
instance "schema."

Most of the terminology is introduced in Chapter 2 and the appendix
contains a list of terms with a reference to where in the main body
of the report an explanation can be found.

1.9.2 Language syntax specifications

Where examples of language statement types are given, the following
rules are followed :

1. The elements which make up a clause or statement consist of
upper case words, lower case words, level numbers, special
characters.

Example: ABCD, abcde, 01, =,

2. Upper case words appear exactly as shown. No distinction is made
between required words and noise words.

3. An asterisk indicates a default option.

3?
31

www.manaraa.com

1-20

4. Lower case words are metalinguistic elements which must be
replaced in a program by appropriate names or values.

5. The specific level-numbers used in describing the Record Section
entry formats of the DBTG and the COBOL Language are required
when such entries are used in a program.

6. The meaning of enclosing a portion of a general format in
special symbols as follows is:

[7

a at least no occurrences

c at most one occurrence

a at least one occurrence
{b
c at most one occurrence

at least one occurrence

at most one occurrence of each

7. An ellipsis (...) indicates repetition is allowed in the source
program. The portion of the format which may be repeated is
determined by the [or which logically matches the] or 1
to the immediate left of the ...

8. The symbol := means 'is defined as", for example

on-clause:= ON ERROR PERFORM

1.9.3 Abbreviations

In tables and figures "n.a." means "not applicable."

1.10 Systems Committee role in future development

As was pointed out earlier in this paper, the CODASYL Systems
Committee has spent three years in an intensive study of general-
ized data base management systems. The fact that this study has
taken so long is an indication of the ever increasing complexity
of the topic. The fact that numerous organizations have seen fit
to sponsor members' participation over such a period of time can
be taken as an indication that an in-house understanding of these
systems is of utmost importance to the affiliations concerned.

The reason that the Systems Committee has chosen to publish two
comprehensive surveys is to make insight available to the data
processing community. The members who have participated in this

3,
32

www.manaraa.com

1-21

effort feel that they have developed considerable insight into
the possible capabilities of generalized data base management
systems. One aim in publishing the two reports hao been to attempt
to disseminate some of this insight and to try to channel thinking
and understanding of such systems into a generally acceptable form.

The charter of the Systems Committee is stated in the CODASYL
coLstitution reads: -

"The Systems Committee strives to build up an expertise in and to
develop advanced languages and techniques for data processing,
with the aim of automating as much as possible of the process
currently thought of as systems analysis, design and implementation."

At this point in time, the expertise in this all important area can
be said to be built up. The next step is the specification of a
common system and the Systems Committee hopes that the insight it
has documented can contribute towards the development of such a
system.

References

[1] A survey of generalized data base management systems. CODASYL
Systems Committee. May 1969. Available from ACM, New York City
and IFIP Administrative Data Processing Group, Amsterdam at
$7.00.

[2] CODASYL COBOL Journal of Development 1969. Number 110-GP-la.
April 1970. Available from Canadian Government Specifications
Board, Ottawa, Canada.

[3] CODASYL Data Base Task Group Report. Available from ACM
New York City, IFIP Administrative Data Processing Group
Amsterdam, and British Computer Society, London.

33
33

www.manaraa.com

1. GENERAL SUMMARY

This chapter provides a technical'introcuction to the feature analysis
of generalized data base management systems. Ten systems have been
used as a basis for the analysis,including the COBOL programming
language and the Data Base Task Group's (DBTG) April 1971 proposal.
As background to the feature analysis, the systems are identified
and a brief summary of their salient features is presented. This
summary includes a general classification of these systems, the data
structure class they deal with, the generalized processes provided
and how they are achieved, the forms and types of system language(s),
the storage structure class and the hardware and software environ-
ment in which these systems are implemented. Since this chapter
is the only one which deals with the systems as an entity (tL re-
maining chapters only deal with them with respect to their features),
a system summary is presented including a brief statement of the
system development philosophy and a narrative description of each
system. Finally the last section provides a selected bibliography
on the systems.

1.1 Identification

A significant distinction is noted between system capabilities
which are provided through system language(s) tailored to particular
functions and capabilities which are provided by augmenting a
general purpose language such as COBOL or PL /l. Capabilities in
the former category are labeled self-contained capabilities, and
those in the latter category are called host language capabilities.

1.1.1 Self - contained

Systems in the self-contained category date back to the early
nineteen-sixties. These systems typically are at least "second
generation" systems, each having at least one precursor system while
one system has been through at least three iterations. Figure 1-1
identifies the self-contained systems used for the feature analysis
of this report by providing their name, acronym, originator, and
initial release date.

34

35

www.manaraa.com

1-2

IDENTIFICATION ACRONYM ORIGINATOR INITIAL RELEASE

Generalized
Information
System

GIS IBM 1969 September

MARK IV MARK IV Informatics
Inc.

1968
(full system)

NMCS
Information
Processing
System

NIPS/FFS
DCA, IBM,
National
Military
Command
System

1968 July

Time-shared
Data manage-
meat System

TDMB

System
Development
Corporation

1969

User Language/1 UL/1 RCA 1969

Figure 1-1
Self-contained systems

1.1.2 Host language

Most systems which provide a host language capability have been
implemented or specified during the last few years. Systems in

this category augment the basic procedural language capabilities

with data manipulation statements, and the data structure class of

their host language (e.g., PL/I or COBOL) is extended to handle the

more complex plex data structures. As a reference point for this
category, two additions have been made -- JOD COBOL and the DBTG

proposal. While the DBTG proposal specifies the necessary components
for a data base management system, the COBOL language usually is not

considered a data base management system. Figure 1-2 identifies

those systems which provide a host language capability whose features

are analyzed in this report.

35
36

www.manaraa.com

1-3

IDENTIFICATION

ACRONYM
(EIS used in

report)
ORIGINATOR(S)

INITIAL
RELEASE
DATE

Journal of
Development
Common Business
Oriented
Language

COBOL CODASYL
1970 April
(specification)

Data Base
Task Group
Proposal

DBTG
.

CODASYL
Programming
Language
Committee

1971 April
(specification)

Integrated
Data Store IDS

Honeywell
Information
Systems

1963

Information
Management
System

IMS
International
Business
Machines

North
Amelican
Rockwell

1969 September

System
Control-1 SC-1

Western
Electric

Auerbach 1

1970 July

1
Developed by Western Electric with Auerbach providing the technical
assistance based upon the DM-1 concept.

Figure 1-2
H.pst language systems

36

37

www.manaraa.com

This dichotomy between systems that provide host language capabili-
ties and those that provide self-contained capabilities is by no
means exact, nor are the two categories mutually exclusive. It is
possible for some systems which provide a host language capability
to also provide self-contained capabilities. It is also possible
for a self-contained system to provide a host language capability.

1.2 Data structure class

Data structure is the users' conception of the data, independent
of the way in which the data are stored (storage structure) by the
system. It provides a picture of the data base so that the struc-
tural components and their attributes can be described. The data
structure class indicates the data structurirg capability of a sys-
tem by describing the class of data structures made available to
the user. The data structure class is defined by a fixed set of
generic structure types: item, group, group relation, entry, file,
and data-base. The entry level is chosen as the basis for summariz-
ing the data structure class because it is usually used to represent
the major entities of an application (e.g., the employees of a firm).
An entry is a set of groups and group relations in which one and
only one group, the entry defining group, is no contained in or
subordinate to any other group. There are three types of entry
identification: a group entry which consists of a single compound
group in which the subordinate groups are nested; the tree entry
which is a set of simple groups (non-nested) possessing a hierarchic
group relation; and the generalization of the tree entry the plex
entry -- a set of group relations in which every group except the
entry-defining one can be subordinate to another group and partici-
pate in more general relations. Figure 1-3 summarizes the data
structure class by indicating the types of entries and files of the
systems analyzed in this report.

3.7

38

www.manaraa.com

1-5

SYSTEM DATA STRUCTURE CLASS
NAME

ENTRY TYPE FILE TYPE

GIS tree unlinked

MARK IV tree unlinked

NIPS/FFS group unlinked

TDMS group unlinked

UL/1 special unlinked

JOD COBOL group unlinked

DBTG group linked

IDS group linked

IMS
2

tree
plex

linked

SC-1 group unlinked

1
UL/1 allows up to 15 sets of group relation schemas each structured
as a tree

2
INS has two data structure classes: one for the data administrator
(linked) and one for the application programmer (unlinked), the
latter being a subset of the former.

Figure 1-3
System data structure class

38
39

www.manaraa.com

1-6

1.3 Generalized processes provided

A generalized data 'base management system is potentially capable of
providing generalized processing facilities for either the program-
ming user or the non-programming user, or both.

The non-programming User is riot necessarily a non-programmer. This
term is used to indicate that the user is not required to write a
program in a conventional programming language in order to use the
data base. In this sense, users are being described according to
what they have to do as opposed to what they have to be (their skills,
etc.). For the non-programming user, the system may provide facili-
ties for performing such functions as data definition, rile creation,
interrogation, extraction, update, and data structuring. The user
invokes the function and provides the input it requires which could
be anything from a small set of parameters to a "program" written in
some special purpose language. A self-contained system usually
provides a special language for the user to specify high level
operations oriented to the function to be performed.

The facilities provided by a system for the programming user are
called data manipulation facilities, because they are directed toward
the explicit manipulation of a data base by a programmer. The
programmer data manipulation facilities often consist of such opera-
tions as opening and closing files, fetching or storing data on
direct access storage devices and searching for, holding or modifying
particular sets of data. These facilities are requested through
statements embedded in a procedural program written in a conventional
programming language, called the host language.

It is possible for a system to provide facilities for both categories
of users. For the non-programming user, program modules are designed
to perform common functions with a special interface -- usually
some form of command interface to call upon the data manipulation
facilities. If a system with the self-contained functions also
provides programming facilities, perhaps the same as are used by the
function modules, programming users are then able to create their
own program modules to do special tasks, to perform normal functions
(update, interrogate) in special ways, and to tailor-make their own
application programs.

Although there is no universal agreement on all of the generalized
functions provided by the host language and self-contained systems,
the functions deemed part of a generalized data base management sys-
tem are data definition, file creation, file update, interrogation,
and a programming facility. All of the systems possessing self-
contained capabilities analyzed in this report provided all of the
generalized functions except a programming facility. On the other
hand, all of the systems manifesting host language capabilities
provided (by definition) a programming facility, and a data definition

39

www.manaraa.com

1-7

function but not usually the self-contained functions of creation,
update and interrogation. One system, SC-1, provides to a large
degree all data base management functions.

1.4 Language type

Systems, particularly those with self-contained capabilities, often
have multiple languages or at least several sub-languages. The
purpose of the language is to provide a facile user interface to
the system; that is, the intention is ,`,o make it easy for the user to
use the capabilities of the system. Typically these languages exist
in many forms and levels depending on the systems. Four types are
identified as narrative, keyword, separator, and fixed position.
Usually the system languages are not pure but rather are a mixture
of the different language types.

The most general kind of language form is free form narrative, some-
times called English-like. Generally there are severe syntactic
'restrictions, but the result is something resembling sentences as
in the example from the DBTG proposal:

SCHEMA NAME IS EMPFILE

RECORD NAME IS EMPREC

LOCATION MODE IS CALC USING EMPNO

SET NAME IS SKILLS

PRIVACY LOCK FOR REMOVE IS AUTHENTICATE

In many cases additional "noise words" may be included for clarity
but are ignored by the system. In the previous example the noise
words THE and FUNCTION can be added to the last phrase yielding:

THE PRIVACY LOCK FOR THE REMOVE FUNCTION IS AUTHENTICATE

The keyword form, the second language type, consists essentially of
a sequence of attribute-value pairs, as shown in the following
example from a GIS data definition:

FLD:NAME = EMPNAME, UNITS = PACD, LENGTH = 20,

HEADER = EMPLOYEE NAME

SEGM:NAME = EDUCATION, LEVEL = 2

40.

41

www.manaraa.com

1-8

Languages for systems which operate in an interactive mode are
usually of this type:

The system outputs - FLD:NAME =
and the user responds - EMPNAME

This has the advantage (shared by the questionnaire-type systems) of
guiding the user through the preparation process.

If the set of attributes and their sequence is fixed, the separator
form is used. Only the attribute values, separated by some special
character are required as input. The separator form usually requires
a "context specifier", a keyword followed by a sequence of attribute-
values. Thus the separator form appears to consist of clauses which
begin with a keywor", sometimes a verb, followed by parameters or
modifiers in separator form. It is evident that separator form
becomes keyword form when only one value follows the keyword.

The following item definition in the separator form is taken from GIS
and is the same example as used in the keyword form, except the units
data (PACD) is omitted (indicated by the two adjacent commas). This
indicates the multiple language forms of the system's data definition
capability.

FLD, EMPNAME 20, NAME

In this case the separator is the "comma."

Finally there are those systems in which each element of the definition
appears in a fixed position (e.g., punched card column) on an input
medium. Often a preprinted form (or questionnaire) is provided to
simplify the user's task, as shown in the example of a MARK IV partial
file definition form in Figure l-4.

z

9 1011

L

L

Field Name 01

01

18 19

Field

Location

23 .26

Field
1-4

Length

r.")

gd

is. En

27 2930 31

01

a.

5

32 33

w 2

36 .38

Output
Edit

11
5
U

3940 41 42 43
1

Column He

Figure 1-4
. .

MARK IV file definition form

41
42

......

www.manaraa.com

1-9

Figure 1-5 summarizes the various language forms used as the interface
to the data definition, interrogation and update functions.

SYSTEM

FUNCTION
PROGRAMMING

FACILITIES
DATA DEFINITION INTERROGATION UPDATE

GIS all forms are
provided

narrative narrative n.a.
1

MARX IV fixed position fixed position fixed position n.a.

NIPS/FFS separator separator narrative(NFL)2
keyword (OM)
fixed position
(POOL)

n.a.

TDMS narrative narrative narrative n.a.

UL/1 separator; some
narrative ele-
ments

narrative narrative n.a.

COBOL narrative n.a. n.a. narrative

DBTG narrative n.a. n.a. 1,--vative

IDS narrative n.a. n.a. narrative

INS separator or
keyword

n.a. n.a, separator

SC-1 separator narrative narrative narrative

1not applicable

2NIPS/FFS update languages

Figure 1-5
System language types

42
143

www.manaraa.com

1-10

1.5 Storage structure class

Storage structure is the implementation of a particular data struc-
ture on the physical storage media. Whereas the data strut .-e is
the user's view of the data, the storage structure is the system's
view of the data. Storage. structure can be. described informally as
the process of relating the instances of the data structure compo-
nents to the physical components of the store (file, records,
tracks, blocks, words, bytes).

Table 1-6 presents the file level storage structure and indicates
if the system provides user-controlled secondary indexing.

SYSTEM
NAME

STORAGE STRUCTURE CLASS INDEXING

GIS sequential (fixed, variable)
indexed sequential (fixed)

MARK IV sequential (variable)
indexed sequential (fixed, variable)

NIPS/FFS sequential (variable)
indexed sequential (variable)

TDMS cross indexed tree structure
completely inverted

complete

UL/1 sequential, variable length

COBOL sequential or random

DBTG strategy
iointer array yes

IDS forward pointers, and optionally,
backward pointers and pointers to
parent
no group cycles

IMS IMS entry sequential
indexed sequential

chaining
direct
indexed direct

SC-1 sequential (fixed blocks) yes

The storage structure class is completely indexed; hence there is
no need for a secondary indexing capability.

Figure -6
System storage structure class

43

www.manaraa.com

1.6 System environment

No description of a data base management system is complete without
a summarization of the operational system environment -- both hard-
ware and software -- in which the system functions. key implemen-
tation consideration is the interface between the operating system
and the data base management. An important user consideration is
the mode or modes of operation available to him. Figure 1-7 sum-
marizes the system environment of the data base management system
by indicating the latest version of the software, the hardware
including the smallest configuration in which it will operate, the
operating system (version and type) and the modes of use of the
system.

44

45

www.manaraa.com

1-12

SYSTEM
ENVIRONMENT

HARDWARE
OPERATING
SYSTEM

SMALLEST
MACHINE

MODES OF USE

BATCH ONLINE

GIS IBM
System 360

0/S 360
mFT_II

MVT
Model 40G
Model 501

yes
yes

yes

yes

MARK IV IBM
System 360
RCA

SPECTRA TO

o/s 360
DOS 360
PCP
TDOS

Model 25J

Model 45

yes

yes

no

no

NIPS/FFS IBM
System 360

0/S 360
Nor-II
MVT
PCP

Model 40H
Model 501

yes
yes

no

yes

TDMS IBM
System 360

ADEPT 50 Model 50H no yes

UL/1 RCA
SPECTRA 70 TDOS Model 45 yes no

COBOL n.a. yes yes

DBTG n.a. n.a. n.a.

IDS H 600
and H 6000
series

GECOS-III H 615 yes yes

IMS IBM
System 360
and

System 370

0/S 360
MFT and
MVT

Model 50H
Model 145H

yes
no

no
yes

SC-1 IBM
System 360

0/S 36C
MFT
MVT

Model 50H yes no

Figure 1-7
System environment

4 5)

46

www.manaraa.com

1-13

1.7 System summaries

The design philosophy and a narrative system description of the
eight systems usually identified as data base management systems,
JOD, COBOL and the DBTG proposal are presented in this section.
The purpose is to present an overall view of the systems whose
features are analyzed in this report,-but not necessarily to pro-
vide total insight into these systems. The design philosophy is
followed by an overall narrative description of the systems
analyzed.

1.7.1 Underlying philosophy

In the design of data base management facilities, particularly
the self-contained functions and the host language data manipu-
lation facilities, there is always some underlying philosophy
which governs the compromises made in both design and implementa-
tion of the system,and therefore provides a basis for under-
'standing the system.

The design philosophy of the self-contained systems is usually
directed towards developing a higher-level language for use by
non-programmers to provide self-contained capabilities. This
philosophy usually results in several system languages such as one
for interrogation and update. The specific use at the interroga-
tion and update functions are not predefined and may change from
day to day. Hence, these systems provide a mechanism for responding
in a rapid manner to ad hoc interrogations and updates.

Although the systems possessing self-contained capabilities are
interfaced with a general purpose operating system, they are not
usually integrated with all of the facilities provided under these
operating systems (e.g., they usually do not allow programming in
procedural languages -- COBOL, FORTRAN within an interrogation).

The philosophy of systems with a host language capability is to
provide data base management capabilities through enhancing the data
definition and manipulation facilities of conventional programming
languages. In some of the systems the data definition function 5s
independent of the data manipulation functions in the host language.

GIS

GIS was developed to fill the need for a generalized system which
can interrogate and maintain arbitrary user files in response to
unstructured or unanticipated requests. User files are defined
to the system through a special data description language. Subsequent
requests for file retrieval and updating are entered in a special
high-level procedural language suitable for use by non-programmers.
Requests may be entered through the system. input device or a terminal,
and responses may be directed to the system output device or the
originating terminal.

46.
47

www.manaraa.com

1-14

A feature is tin use of storage structures which are standard to
IBM's OS/360. Thus, files created by GIS may be used outside the
system with a minimum of effort, and files created outside the
system to its specifications may be used within the system.

MARK IV

The chief goal of the system is to facilitate batch commercial
data processing by providing a simple, easy to use, interface to
self-contained data base management capabilities. The use of
tabular forms is intended to make basic information retrieval and
maintenance functions easier for the commercial systems user who,
previously, had to use a programming language. System default
conditions on many form options are intended to permit users to
specify a minimum amount of information to accomplish data proces-
sing tasks. As many of these tasks can be batched together as
required, the system informs the user of any errors, and at all
times attempts to continue processing. A design objective was to
be as independent of OS and DOS releases as possible.

NIPS/FFS

This system was designed to meet the need for a system that provides
responsive batch processing of large files and also handles file
updating and interrogration from remote keyboard and CRT display
devices. It is assumed that batch processing will be used on
large files that are subject to predetermined schedules and
recurring processing that is initially formulated by experienced
personnel which may be initiated on a regular basis by others.
The system allows the batching of many different retrievals or up-
dates for a single pass through the file. Retrieval and report
specifications are facilitated by high-level languages with English-
like operators.

From remote keyboard or display devices, interrogations may be formu-
lated and prestored interrogations or updates may be invoked by
users with only a rudimentary knowledge of the system.

TDMS

The overall design philosophy was to provide a reasonably complete
set of self-contained capabilities in an interactive environment.
Rapid solutions are provided to a variety of user data base problems
by using a language oriented to non-programming users under a time-
sharing system (ADEPT-50). Further design goals include the develop-
ment of a hierarchical data handling capability and the implementa-
tion of a storage structure to allow rapid response to ad hoc
inquiries.

47

www.manaraa.com

1-15

UL /1

The philosophy was to provide self-contained capabilities for a
variety of non-progrAmming users -- including those interrogating
or updating a data base. UL/1 provides the capability for specify-
ing ad hoc interrogations in the minimum amount of time. In addition,
it provides capability for specifying computations in a specially
designed procedure language embedded in it and invokable from sec-
tions of the language.

COBOL

COBOL, a procedural programming language, is not usually referred to
as being a data base management system. It provides for reading,
writing, and processing files contained on sequential storage
devices and direct access devices. The set of data manipulation lan-
guage statements provides a basic yardstick for a data manipulation
language. The 1969 JOD version supplies support for enhanced charac-
ter manipulation, communications oriented use, interprogram communi-
cation, and asynchronous processing in addition to the facilities of
table handling, report generating, and sorting.

DBTG

The DBTG proposal provides specification o.: data manipulation and
definition facilities to the programming user through the Data
Manipulation Language (DML) and a Data Description Language. The DDL
is a language for dscribing a total data base schema which allows
data to be structured in the manner most suitable to each applica-
tion, regardless of the use of the data by other applications. The
schema data description provides a measure of data independence by
allowing common programing languages to access the data base. The
DBTG specification is directed towards multiple languages by pro-
viding a subschema (part of the total data base schema) and DML faci-
lities specifically oriented towards the conventions of the host
language.

A subschema definition capability is provided for describing that
portion of the data base pertinent to a specific program or applica-
tion. The subschema DDL also establishes the basis for data mapping,
conversion, renaming, changing of privacy locks, and the omission of
data structures not required by the program. However, the described
subschema must be logical and consistent subset of the schema from
which it is drawn.

The DML extends the host language to permit selection of record
occurrences, processing of data relationships, and transfEr of data
between the user's program and the data base. The group inctance
("record") is the fundamental unit of data with which the programmer
deals. The DMI, relies on the host language to provide required data
manipulation capabilities.

48-
49

www.manaraa.com

1-16

DBTG explicitly recognizes the multiprogramming environment and
provides DML mechanisms to preserve data base integrity.

IDS

Integrated Data Store (IDS) is a data storage and retrieval system
which permits user design and implementation of a data base specifi-
cally suited to the requirements of an application. The user pro-
grams an application in a host language, COBOL, which has been aug-
mented by IDS language elements. These elements resemble COBOL in
that they are English-like and are subject to the same usage formats
and conventions.

This host language augmentation provides the means for defining IDS
data structures and for specifying the storage, retrieval, and up-
date of information stored on direct access devices.

The basic unit of data is the fixed format "record" and record
"chaining" is the fundamental data structuring tool. Chains are
defined in the data definition function, and maintained by the sys-
tem. The system was designed primarily to manipulate data records
on a direct access device.

IMS

The system provides enhanced data management services called data
base management services and data communications management services.
They augment those provided by Operating System/360. The primary
objectives of IMS are to provide an easty-to-use application pro-
grammer interface to shared data. As a consequence, some of the
capabilities normally associated with data base management systems
are not part of the services provided by the system.

SC-1

The system was designed to provide generalized facilities for the
non-programmer, the applications programmer, and the systems pro-
grammer, all operating in a common data base environment. Facili-
ties are provided to operate in conjunction with the vendor-
supplied operating system. The programming users access and manipu-
late the data base using the DAMOL language which is hosted in
various programming languages. Self-contained functions are pro-
vided for non-programming users for the purposes of file update
and interrogation. Facilities are provided for creating the logi-
cal and physical data base environment and for tailoring that
environment to particular applicatiqn programs through the use of
auxiliary data definitions.

49
50

www.manaraa.com

1-17

1.7.2 System descriptions

A short narrative description gives a total view of the system as
a whole in contrast to the individual feature analysis of the subse-
quent sections.

GIS

GIS is a system of generalized programs which perform the functions
of file definition, file creation, file interrogation, and file
maintenance. Programs are adapted to specific applications through
user-supplied task specifications consisting of definitions and pro-
cedures. Task specifications are expressed in a high-level, non-
programmer-oriented language.

A data base is made up of files, with each file containing a variable
number of entries of a single type. Entries consist of a single
master group, and optionally up to 15 levels of hierarchically re-
lated subordinate groups. A group is composed of a fixed set of
fixed-size items whose types include packed decimal and EBCDIC.
Items, groups, and files all have user-assigned names.

A data description task is provided for defining the data structure
of the files comprising the user's data base and the input files
used to update the data base. In addition to data structure, data
description tasks are used to define certain aspects of storage
structure; file and item access locks; input and output data validation
and transformation; and event recording options. A certain amount
of redefinition capability is also provided.

Procedural tasks are provided for performing the functions of file
interrogation, updating, and creation. Task types include: QUERY
tasks in which data from up to 16 files may be extracted for
presentation in printed reports or for recording in'temporary files;
MODIFY tasks in which one or more "master" files may be updated from
one or more"source" files; UPDATE tasks in which a single master file
is updated from a single source file: and CREATE tasks in which a
new file is created from a single source file. The logic of QUERY
and MODIFY tasks is determined largely by the user's specifications,
which may contain statements for locating and selecting instances of
entries and groups, for performing arithmetic and logical operations
on file data, and for generating retorts and temporary files for
further processing. The logic of UPDATE and CREATE tasks, on the
other hand, is largely fixed by system design. The logic is that
of the traditional generalized file maintenance program, and the
user's specification serves mainly to supply parameters required
by the generalized program.

50
51

www.manaraa.com

1-18

While the primary language of GIS is a high-level, non-programmer-
oriented language, certain programmer facilities are provided for
extending system capabilities. These include provisions for in-
voking user-written assembly language routines, either explicitly
from procedural task specifications or implicitly from input/output
validation and conversion processes. Provision is also made for
saving and subsequently invoking user-written procedural task
specifications.

GIS facilities of concern to the data administration include the
data definition task, the file creation and updating tasks, and a
utility task for building and modifying an installation security table
which controls user access to files and items within files.

GIS files are standard OS/360 data sets. Each file entry is recorded
as a single data management logical record, with the groups of the
entry appearing in the record in top-down left-to-right sequence. A
data set may have either sequential or indexed sequential organization.

GIS operates on the System/360 under either the MFT or MVT version of
Operations System/360. For operation under MFT, a configuration no
smaller than a model 40 with 192K bytes of core storage is recommended,
while for operation under MVT, a model 50 with 512K bytes of core storage
is recommended. Under either operating system, GIS may be operated in
either the batch mode or in the transaction mode. In addition, under
MVT, concurrent batch and transaction processing is possible.

The transaction mode of operation requires the user to write a QTAM or
TCAM (OS/360 terminal access methods) message control program which
defines the user's terminal network and queues task specifications from
terminals and responses by GIS. The transaction mode can thus be used
from any terminal supported by QTAM or TCAM.

In the batch mode, task specifications are entered through the system
input device, while in the transaction mode specifications may be entered
through a terminal. Task specifications are either executed directly, or
are compiled by the GIS language compiler into running programs which are
then executed to carry out the tasks specified by the user. Output goes
to the system output device or to the terminal where the task originated.
The output consists typically of a listing of the original task speci-
fication with error indications; a listing of user-selected events (such
as I/O errors) which occurred in carrying out the task; and the normal
response to the task, such as a listing of selected file data.

51
52

www.manaraa.com

1-19

MARK IV

The primary goal is to provide the ability to manipulate files of
data. The id.escription of these files is independent of the files
themselves. The structures and format of a file and the records
(entries) within that file are defined. to the system and stored in a
dictionary. The transactions which are used to create or update data
files are likewise defined to the system and stored in a dictionary.
These definitions identify the data. that will update the file and
specify the updating action to be performed.

After the files and their transactions have beeen defined, file main-
tenance can be performed. When the user specifies that a particualr
file maintenance is to be invoked, the system reads the master file,
reads the.transactions, and does the updating.

Once files have been created, information requests can be made.
These requests are used to select entries from a file, select speci-
fied data from the entries for computation and logical processing
and specify the desired output. This output takes the form of re-
ports, intermediate result files, subsets of the original file, or
combinations of all of these. In addition, the system has the
ability to process multiple input files simultaneously; in a single
sun, the system can read five input files, generate 13 output riles,
and up to 25 different reports,.

Requests that are to be repetitilA.ly used can be batched arid stored
in a system catalog as a request group; such a grouping is referred
to as a cataloged job and may be subsequently invoked by specifying
the request group name. In addition, each cataloged job can be
modified by batching additional requests -with it. For example, ad hoc
requirements can be combined with a cataloged job for processing,
thus alleviating the need for multiple file passes. If any requests
contain errors, thej will not be processed, and will not impact the
processing of other valid requests.

MARK IV operates in a batch mode, serving two classes of users. The
experienced user can apply the full capability of the system to
accomplish his data processing tasks. The inexperienced user can use
the request capability portion of the system to make ad hoc inquiries-
he need only know the names of the data items and the master file they
belong to.

MARK IV is intended to be used for routine batch commercial data
processing. It is suited for commercial information systems (e.g.,
a personne. information system), and is less well suited for systems
that are highly analytic, or that contain large amounts of complex
arithmetic.

52

53

www.manaraa.com

1-20

NIPS/FFS

This system has evolved over a number of years in a user environment.
The present implementation uses a two-level hierarchical data struc-
ture with numeric, alpha numeric, and geographic coordinate data
types. The user describes his data to the system by specifying item
names, lengths and types, group names, conversion and editing tables
and subroutines and output names. The file definition is stored in
coded form at the beginning of each file in a "File Format Table."
The user revises file definition by indicating changes to an existing
"File Format Table." The result is a new file with the revised "File
Format Table" and the applicable data from the old. file. "File

Format Tables" will also be provided with segments of sequential
files. The segmentation of sequential files is currently being added
to the system to allow users of large files to process a file segment
or a concatenation of as many file segments as he needs.

Both the interrogation and update functions of the system are charac-
terized by a multiplicity of facilities. Batch interrogations can
be performed as either a one or a two _tap operation. In a two-step
interrogation, the initial retrieval is made by the Retrieval and
Sort Prbcessor (RASP) which selects the data that meet the retrieval
criteria and places it in an answer file. Answer files and/or data
files may be merged and/or sorted as desired. The batch reporting
processor called the Output Processor (OP) can operate on a single
data file as a one-step interrogation or on a RASP answer file as
the second step of a two-step interrogation. OP gives the user
detailed ,control over.report content and format.

Minimum user control over report *content and format is provided by
the Quick Inquiry Processor (QUIP). QUIP may be used either in batch
processing or from a remote terminal. From a terrinal it may be
used eicher to invoke prestored RASP and/or OP interrogations or to
specify interrogations which require a short response time and
generate small amounts of output. QUIP statements are currently
being expanded to give the user more power to express conditions,
specify computations and control format. QUIP and OP will both be
enhanzed shortly by the ability to interrogate multiple files.

File updating during batch processing can be specified in three
different languages representing different levels of detail in user
specifications. From a remote terminal' updating may be performed
by invoking prestored update procedures and supplying parameters
and data. Because large files make the processing of interrogations
and updates a lengthy process, a restart capability is being added
tc the batch interrogation and the batch updating processors.

Data administration is handled at the file level by the person
responsible for maintaining the file. Although NIPS/FFS provides for
indicating file and report classifications, security enforcement is
secured by administrative action that is external to the system.

53
514

www.manaraa.com

1-21

In the near future the system will at the user's option print or
record in a transaction file information on the number of times pro-
cedures are executed, amounts of core storage used, the amount of core
swapping done and the number of data references included in procedures.

The storage structure used makes maximum use of the OS/360 facilities
for maintaining sequential files on magnetic tape or disk and indexed
sequential files on disk. These facilities will shortly be supple-
mented by the implementation of cross indexes within any type of
file. These will be established, at the user's option, on any fixed
length item. Using these facilities each entry is represented in
,torage by a series of similarly structured records. Each record
represents the fixed group required for each entry or an instance of
a repeating group.

The present implementation uses IBM S/360 model 40 or larger computers
and can operate with the PCP, MFT, or MVT versions of OS/360. It

uses the input/output, file access, sort, library, and pogram linking
and loading facilities of OS/360, It also uses the Graphic Access
Method and Basic Telecommunications Access Method to contrcl remote
terminals. These are supplemented by a Terminal Processor Monitor
and Terminal Processor Supervisor which will soon be enhanced to
allow communication from the computer operatcy, to one or more terminal
operators and from one terminal operator to one or more other terminals.

TDMS

TDMS allows users to rapidly retrieve and manipulat data from
large data bases to solve pressing everyday problems. It provides
this capability in a direct and uncomplicated way that does not
require the user to have a sophisticated knowledge of computer
technology.

With this system, the user can accomplish the following:

Describe large collections of data and enter them into the
computer using only the real characteristics of the data --
that is, name, type and relationship to other items --
without being concerned with computer functions.

Modify data items on-line through a terminal device or off-
line if the volume of his uransactions warrants this kind
of operation.

Retrieve information by simply presenting queries to the
computer or by requesting reports of various kinds to be
generated -- again either on-line or off-line (any data
item or items can be used for selective retrieval, thus
freeing the user from the necessity of specifying at data
definition time which items are to be indexed).

Manage large data files -- that is, subset, merge, sort and
perform other data handling functions, using a convenient
language.

54.
55

www.manaraa.com

1-22

With this data management system, the user constructs a file by
defining the data he wants to store and then presenting the actual
data values to the system in the accepted format. Errors in input
data are automatically presented to the user for correction so that
only correct data enter the file.

If the user has a previously existing file in another format, the
system provides special translation programs to achieve the necessary
conversion. He is now ready to use the system to solve problems.

First, he gains direct access to the computer, typically from a remote
console. He can call upon a file he has previously constructed, the
names and contents of which he has determined himself- or any other
file in the system that he is authorized to use. If he is not sure of
how to go about solving his problem he can ask the system for help.

He can then request that selected portions of his file be presented for
his analysis. He can ask questions about the characteristics of his
data (e.g., limits, number of items of certain types, average values,
and so on); he can change values, perform arithmetic operations on the
data and combine or rearrange groups of data.

Finally, he can ask for hard-copy reports of any data--and in the
format he perfers. Thus the user--that is, the person directly
concerned with the problem--receives only the information he really
needs, at the time he needs it and in the form most usable to him.

UL/1

The system comprises a non-procedural user-oriented language which
may be used in communicating with files in a data base. The language

may be used for interrogation, which involves retrieving information

reports from a file and also for updating the file. This version has
facilities for converting into UL/1 format from fixed field, fixed
record length files. When such files are established as U1/1 files,
they may then be interrogated and updated. New files, namely files
which are designed specifically for use with UL/1 may be defined having
a structure with up to 15 levels of repeating groups and complete

variability in item and record length.

Two levels of user are supported. The first is the data base admini-
strator who is responsible for establishing a file in the data base.
The second is a specifier user who is able to specify interrogations
and updates, and is closest to the current concept of an application

programmer.

A specifier user may query or update a single file in the data base.
He will be able to extract information from the file in several forms.

Printed reports may contain values from the file and the format of
the report may be either standard or user specified. Other printed

reports may be tables of the frequency of occurrence and co-occurrence
of different values of specifi4d'data items. In addition to printed

56

55

www.manaraa.com

1-23

reports, sub-files may be extracted with either a standard record
layout or with a user specified layout. Tn extracted files and in
printed reports, sorting tray be specified using any data, items as
sortkeys.

Interrogation may also be performed on sequential COBOL files without
conversion. Such files must be definable using Spectra 70 COBOL, and
the File Section of the COBOL Data Division is processed as part of
the UL/1 language. It is possible to interrogate a coordinated set
of up to four COBOL definable files, any or all of which may contain
multiple record types (in the COBOL sense).

Updating may be specified on the record level, the data item level
or on lower levels down to characters within al alphanumeric value.

Interrogation in the initial relcase will cause sequential searching
of the file stored on either tape or disk and updating will require
copying the whole file.

Files which have been established into the UL/1 format may be revised.
This means that new items may be introduced into the schema for each
entry and numerous other modifications may be made to the file defi-
nition data.

Finally it is possible in interrogation and update to name and to
define frequently used interrogations or updates in such a way that
they may be invoked several times in the same run with only the name
and parameter values specified.

COBOL

The COBOL language developed out of the computer users' need for a
single problem-oriented, machine independent language for business
applications. While the attributes of the language make it feasible
for use by application oriented personnel it is a language for pro-
grammers and is not intended to be used by people unfamiliar with
the use of computers.

There are two aspects to tie use of COBOL -- the language and the
computer which translates the language. This feature analysis is
primarily concerned with the features of the language rather than its
particular implementation. The COBOL language is divided into four
divisions -- IDENTIFICATION, ENVIRONMENT, DATA, and PROCEDURE.

The purpose of the Identification Division is to identify the source
program and the results of the compilation process -- the output.
Various attributes can be specified such as the date the program was
written and the date of compilation.

The Environment Division specifies the environment in which the
program is to be used. Specified in this division is the description

56
57

www.manaraa.com

l--21L

of the hardware used to both Compute and execute the program, It
allows problem oriented names to be assigned to particular hardware
and the physical aspect of file and. storage are specified. This
division is largely computer'dependent.

In the Data Division the logical aspects. of. file and "record" (used
in the object program) description are defined. The characteristics
and properties of a standard data structure class are specified in
the Data Division.

The Procedure Division specifies the steps that must be followed to
accomplish the objectives of the program. These steps are specified
in English-like imperative statements grouped into sentences and
paragraphs. This division is essentially computer independent
allowing the same syntax interpretation on any computer or compiler
implementation.

Verbs are provided for accessing data from secondary storage, for
movement (with implied editing) of data in primary storage, for
arithmetic operations, and for scanning and editing strings of charac-
ters. In addition, verbs are provided for telecommunication device
accessing, the searching of tables, sorting and report generation.
From tllese,procedures can be written to perform the functions of file
creation, updating, and interrogation.

DBTG

The language proposed by the DBTG includes two types of Data Descrip-
tion Languages (DDL) and a Data Manipulation Language (DML).

The DDL is the language ILsed for describing a data base, or that
part cf a data base known to be a program. These descriptions are
in terms of the names and characteristics of data-items, data-
aggregates, records, areas, and sets included in the data-base, and
the relationships that exist and must be maintained between occurrences
of these elements in the data base.

A record is a named collection of data-items, vectors, and repeating
groups which may occur an arbitrary number of times within a data base.

A set is a named collection of record types which establishes the
characteristics of an arbitrary number of occurrences of the named
set. A set consists of one record type declared as its owner and
one or more record types declared as its member records.

An area is a named subdivision of addressable storage space in a data
base which contain occurrences of records and sets. The concept of
area allows the Data Admihistrator to subdivide a data base to control
placement of records and sets, optimize concurrent access by multiple
run-units, and provide a convenient unit for recovery.

58

www.manaraa.com

1-25

A data base consists of all the record occurrences, set occurrences
and areas which are controlled by a specific schema. The DDL lan-
guage permits description of multiple data bases.

A schema consists of the names and descriptions of all of the areas,
sets, records, and associated data-items within the data base. The
DDL used to describe the schema is a language common to all sub-
schema DDL's and provides a measure of data independence for program
access to the data base. This capability provides support for
multiple languages.

A sub-schema is a description of a portion of the data base which
pertains to an individual program or application. The sub-schema
DDL provides capability for data-item renaming, change of character-
istics, omission of data and data structures not required, reordering
and change of privacy locks for data-items and data aggregates within
a record. At the record level: descriptions of specific record types
may be omitted, privacy locks may be changed and access to record
occurrences within areas may be controlled. At the set level: set

descriptions may be omitted, privacy locks may be changed and diffe-
rent set selection criteria may be specified. At the area level,
privacy locks may be changed and areas may be omitted. A sub-
schema, however, must be a consistent and logical subset of the
schema from which it is drawn. The sub-schema DDL and the DML are
oriented towards the conventions of a specific host language. The
DBTG proposal includes the sub-schema DDL and. DML for COBOL.

The DML is the language which the programmer uses to select record
occurrences, set occurrences and cause data transfer between his
program and the data base. The DML relies on a host language to
provide a framework for it and to provide the procedural capabilities
required to manipulate data. Each DML is oriented towards the charac-
teristics of the host language in which it is used. The DBTG DML is
oriented towards COBOL.

The objectives of the DBTG language proposal is to provide features
which:

allow data to be structured in the manner most suitable to
each application, regardless of the fact that some or all
of that data may be used by other applications -- such
flexibility to be achieved without requiring data redundancy.

allow more than one run-unit to concurrently retrieve or update
the data in the data base.

provide and permit the use of a variety of search strategies
against an entire data base or portions of a data base.

provide protection of the data base against unauthorized
access of data and from untoward interaction of programs.

provide for centralized capability to control the physical
placement of data.

58
59

www.manaraa.com

1-26

provide device independence for programs.
allow the declaration of a variety of data structures ranging

from those in which no connection exists between data-
items to network structures.

allow the user to interact with the data while being relieved
of the mechanics of maintaining the structural associations
which have been declared.

allow programs to be as independent of the data as current
techniques will permit.

provide for separate descriptions of the data in the data
base and of the data known to a program.

provide for a description of the data base which is not
restricted to any particular processing language.

provide an architecture which permits the description of
the data base, and the dc,ca base itself, to be interfaced
by multiple processing languages.

IDS

Integrated Data, store (Ins), in its simplest sense, is a technique of
data record organization which allows the application of specialized
storage, retrieval, and update methods. The user defines the hier-
archical relationships) among the data, elements with which the
application he is programming is concerned and specifies the methods
of access to be applied. Thus IDS is a data storage and retrieval
system by which data structure is tailored by the user to particular
application needs.

Typically, IDS implementations are designed to operate together with
COBOL as a host language. Withih this symbiotic relationship, lan-
guage elements relating to IDS functions describe the storage,
retrieval, and update functions relating to data stored on direct
access devices. The host language facilities are used to define all
other data manipulation, validation, and reporting functions.

Generation of the object code for the application can be looked on
as requiring two phases. In the first, the IDS langauge elements
are processed to produce host compiler acceptable coding reflecting
the requirements of those elements. The second phase is a standard
host language compilation.

The options available to an IDS programmer are to a great extent
defined by the host language and the operating system under which the
generated code must operate. For example, the GECOS III Operating
System for the GE 625/635 system allows concurrent read access to a
common IDS file in a multiprogramming environment, while as yet there
is no operating system provision for this with the GE-100 system. In

other words, the IDS implementations incorporate the same basic data
structuring methods. The primary differences between implementations
are determined by the hardware/software system with which the user
works.

59
6o

www.manaraa.com

1-27

An IDS file can be stored across different devices (disks and/or
drums). The total space is divided into equal sized pages, in some
implementations about 2,000 characters. Each physical page contains

page identification and control information (a page header) and a

mixture of other groups which h9ve been defined within the IDS environ-
ment. Each group contains identification information establishing
uniqueness of the group, chain pointers establishing the structural
relationships between groups, and data established by the user.

The basic structural element of an IDS file is a "chain". A chain

contains one "master" group and any number of "detail" groups. The

master groups contains a poim,er which identifies the "page and line"

reference code of the first detail group. The first detail group
contains a pointer which identifies the next detail group and so on
until the last detail group, which points to the master group.

Data contained in a master group applies to all detaile chaj.ned to
that master. Detail groups contain variable information pertaining
to the master. If specified by the user, each detail in a chain
contains additional reference pointers to identify the prior detail
as well as the next detail and also the master of the chain.

A simple master/detail relationship requires definition of two group
types: one master and one detail. A user may define a given IDS
group as a master to more than one detail chain. In this instance,
the master group contains chain references to as many separate chains
of detail groups as specified. If the user wishes, he may specify a
given detail group as a master to another detail group. Thus IDS
allows any group to function both as master and detail to any number
of other groups. The master/detail relationships among all groups
within the IDS environment are specified by the user.

IDS recognizes three group classes for storage and retrieval: calcu-
lated groups, primary groups, and secondary groups.

Storage/retrieval of a calculated group is based on the value of a
data item stored within the group.

Primary groups are retrieved lased on a pointer furnished by the user.

Secondary groups are retrieved based on their relationship to a
specified master group. Secondary groups are accessed by first
retrieving the master and then stepping through the detail chain to
locate the desired group.

IMS

IMS is a control program system which has been developed to facilitate
the implementation of on-line data base applications. IMS is a host
language system, in that the user is required to write application

www.manaraa.com

1.28

programs which control the transmission of messages to and from ter-
minals and the accessing of the data base. IMS supports concurrent
operation of multiple application programs. These programs may be
message processing programs, conventional batch programs, or any
combination of the two.

An IMS data base is composed of one or more files of tree-structured
entries. Entries of the same or different files may be inter-related,
permitting the non-redundant storage of data common to two entries.
A data definition utility is provided for defining the structure and
attributes of each file in the user's data base. In addition, an
auxiliary definition facility is provided for re-defining one or more
data base files as a single "logical" file. All application program
access to the data base is accomplished through logical files.
Logical file entries are unrelated, so the application programmer
never sees structures more complex than trees.

Applicatiod programs running under TES Are written in COBOL, pi/z,
or System /360 assembler language. gilS data base and telecommuncation
services Are invoked through], call statements which reference separately
stored parameters. Data base services include fetching Of groups
having specified identifiers, fetching of the dependents of a pre-
viously obtained group, storing of new groups, and replacing and
deleting existing groups. Teleprocessing services include the fetch-
ing of input messages and the transmission of output messages.

To permit recovery from hardware and software failures, IMS includes
a checkpoint-restart facility and a facility for logging messages and
data base modifications. Separate utility programs are provided for
dumping and restoring the data base and for reconstructing a data
base from the system log.

Other utility programs provided with the system include security
definition, application definition, data base load and reorganization,
and system log analysis programs.

Files of an IMS data base may have one of two organizations: hier-
archical sequential (HS) and hierarchical direct (HD). The HS
organization has two access methods, HSAM and HISAM, which are based
on the OS/360 sequential access method (SAM) and indexed sequential
access method (ISAM), respectively. HISAM provides a single index
or accessing file entries on the basis of a user-declared entry
identifier.

The HD organization employs a unique block storage technique, in which
one or more groups are stored in physical blocks of the same size,
and relationships between groups (hierarchic and sibling) are main-
tained through relative block addresses imbedded in the blocks. The
HD organization also provides two access methods: HDAM in which
entries are accessed through a hash - addressing technique, and HIDAM
in which entries are accessed through an index as in HISAM.

61
62

www.manaraa.com

1-29

The IMS control program runs in a single region under OS/360 MVT or
MFT. One or more additional regions are used for user message pro-
cessing programs and batch programs accessing the data base. The
control program analyzes incoming messages, queues them, and dispatches
the appropriate application programs. The application program re-
trieves its message(s) from the queue, and carries out its processing,
which typically includes data base access and transmitting a response
to the sending terminal. Additional functions performed by the EMS
control program include message switching, message editing, and inter-
pretation of master and user terminal commands for effecting various
kinds of system control.

SC-1

SC-1 is a data management system that operates with a common data
base. It includes self-contained functions for updating and inter-
rogating the data base as well as the data manipulation language
facilities necessary for the support of host-language applications.

System jobs or utilities are used to create the data base environment.
Users employ special-purpose languages to perform such functions C.3
system data definition, data location, data security definition,
restructure or redefinition of the data base, and the specification
ofiauxiliary data definitions.

User programs written in conventional programming languages are served
by a set of data manipulation facilities called the Data Services.
These services interpret a program's request for data or data manipu-
lation. The requests are made via a data management language (DAMOL)
statement which is embedded in the user's program. This statement
gives the specifications necessary for the Data Services to interact
with the operating system to perform the requested operation.

The SC-1 system contains a generalized input package called Message
Discrimination and Validation, File Update and Surveillance (MDV/FUS)
for introducing external data into the system to update the data
base. Users of this package employ tabular fors and a special
purpose narrative language called MPL (Message Processing Language)
to describe the types of input (the unit of inputis called a message),
the validation checks to be performed on this input, and the data
base updating to be performed using these input messages. These
user-defined specifications serve as input to a system job called
Page Builder which stores them in "pages" in the data base for refer-
ence during a processing application. Users have the option of using
the MDV/FUS input facility in one of two ways. He can use the
Standard Mode of operation, submitting batches of input messages of
different types to the MDV function which performs the appropriate
validity checks and stores the validated. messages for processing at
a later time via a FUS job, or he can use the Pipeline Mode in which

E32

63

www.manaraa.com

1-.3e

an individual message is checked for validity (IvmV) and processed
against the data base (FUS) before the next input message is
identified.

The generalized output or interrogation package is called Report
Data Compiler (RDC). It also uses a special purpose narrative lan-
guage through which users may specify the structure, content, and
format of desired output reports. As in MDV/FUS the report specifi-
cations are compiled and stored for reference during a processing
application. The RDC facility contains the additional feature of
being able to invoke prestored tables or subroutines coded in a
conventional programming language.

Both MDV/FUS and RDC system programs use the Data Ser ices (via
I)AMOL) to interact with the data base. These functions are designed
to accommodate the bulk of input/output processing applications by
non-programmers.

1.8 Selected bibliography.

GIS

Technical articles:

Bryant, J. and P. Semple, "GIS and File Management," Proc. ACM
21st National Conference, 1966, pp. 97-107.

Manuals:

GIS (Basic) Application Description Manual H20-0521
GIS Application Description Manual H20-0574

MARK IV

Technical Articles:

Postley, J.A., "The MARK IV System," Datamation, January 1968,
PP. 28-30,

Manuals:

MARK IV Reference Manual, Document No. P-68810-1.

63
64

www.manaraa.com

1-31

NIPS/FFS

Manuals:

The National Military Command System Information Processing
System 360 Formated File System (NIPS 360 FE'S), Users Manual,
Computer System Manual Number CSM UM 15A-68, 15 January 1970
consists of the following:

Vol I Introduction to File Concepts, changes 1 end 2
Vol II File Structuring (FS), changes 1 and 2
Vol III File Maintenance (FM), changes 1 and 2
Vol IV Retrieval and Sort Processor (RASP), changes 1 and 2
Vol V Output Processor (OP), changes 1 and 2
Vol VI Terminal Processing Component (TP), change 1
Vol VII Utility Support (UT), changes 1 and 2
Vol VIII Job Preparation Procedures, changes 1 and 2
Vol IX Error Cones, change 1
TR 54-70 Installation of NIPS 360 FFS, changes 1 and 2

TDMS

Technical Articles:

SP-2747, "The Time-Shared Data Management System: A New Approach
to Data Management."

SP-2634, "COMPOSE/PRODUCE: A User-Oriented Report Generator
Capability Within the SDC Time-Shared Data Management
System."

SP-2750, "Treating Hierarchical Data Structures in the SDC Time-
Shared Data Management System (TDMS)."

SP-2907, "File Organization in the SDC Time-Shared Data Manage-
ment System (TDMS)."

Manuals:

TM-3370, The Time-Shared Data Management Sy.sten (TDMS) Language
Specifications

TM-3849, The Time - Shared Data Management System Interim User's
Guides

UL/1

Technical Articles

011e, T.W., "UL /l: A Non-Procedural Language for Retrieving
Information from Data Brses," Proc. IFIP Congress 1968,
Edinburgh, Scotland.

65

64

www.manaraa.com

1-32

011e, T.W., "UL /l: A User Language also for Document Applica-
tions." Proceedings of ASIS Conference 1968, pp. 151-153.

Manuals:

RCA Computer Systems TDOS UL/1 Version 2 Reference Manual,
May 1971.

COBOL

"CODASYL COBOL Journal of Development 1969",Number 110-GP-la,
April 1970. Available from The Canadian Government Specifica-
tions Board, Ottawa, Canada.

DBTG

Technical Articles:

"CODASYL Data Base Task Group," April 1971, Report.

IDS

Technical Articles:

Bachman, C.W. and S.B. Williams, "A General Purpose Programming
System for Random Access Memories," Proceedings Fall Joint
Computer Conference 1964, pp. 411-422.

Bachman, C.W., "Software for Random Access Processing,"
Datamation, April 1965, pp. 36-41.

Manuals:

Integrated Data Store - a New Concept in Data Management,
t Publication CPB-483, General Electric Company Information
Systems Department, Phoenix, Arizona.

Integrated Data Store Base Study, Bachman, C.W., Publication
CPB-481, General Electric Company Information Systems Depart-
ment, Phoenix, Arizona.

Introduction to Integrated Data Store, Publication CPB-1048,
April 1965, General Electric Company Information Systems
Department, Phoenix, Arizona.

GE 625/635 Integrated Data Store (GECOS III), Publication
CPB-1565, December 1968, General Electric Company Information
Systems Department, Phoenix, Arizona.

65
66

www.manaraa.com

1-33

IMS

Manuals:

Information Management System/360, Program
Description
General Information Manual
System/Application Design Guide
Application Programming Reference Manual
System Programming Reference Manual
Operator's Reference Manual
Utilities Reference Manual

SC-1

Technical Articles:

SH 20 o634-1
GH 20-0765
SH 20-0910
SH 20-0912
SH 20-0911
SH 20-0913
SH 20-0915

Welsh, W.A., "Engineered Design of EDP Systems," Systems and
Procedures Association International Meeting,. October, 1968.

Nilson, N.W., "The Logical Data Base - Its Concepts, Develop-
ment and Use," AMA Conference, July 9, /968.

Welsh, W.S., "Engineering a Computer-Based Information System,"
AMA Conference Planning and Implementing a Computer-Based
Management Information System, September 1967.

The following Auerbach documents describe the DM-1 concept
used in development cf SC-1:

Stable, J.E., et al., "Design of Reliability Central Data Manage-
ment Subsystem." Final Report. July 1965, Vol. 2. (RADC TR-65-
189 Vol. 2) (As-469-269).

Sable, J., W. Crowley, H. Rosenthal, S. Forst, and M. Harper,
"Reliability Central Automatic Data Processing Subsystem. Vol. 1:
Design Specification Report." Final. August 1966, 131 p. (report
No. 1280-TR-Vol. 1) RADC TR-66-474-Vol. 1 (AD-489-666).

Dixon, P, and J. Sable, "DM-1 -- A Generalized Data Management
System," Proceedings Spring Joint Computer Conference 1967,
p. 185.

Manuals:

System Control-1, User's Guide. Information Systems Engineering,
Western Electric, 80 Mulberry Street, Newark, New Jersey 07102,
1970, January.

66

67

www.manaraa.com

Z. DA TA STRUCTURES

Most data base systems permit users to interact with the data in terms
which are independent of the manner in which the data are physically
stored. In such systems, the user's conception of the. data is called a
data structure. In contrast, the data collection as physically stored is
called a storage structure.

This chapter describes the class of data structures which systems make
available to the user. Storage structure aspects are covered in Chapter
9. Wherever data structure and storage structure facilities are indis-
tinguishable, the facilities are covered here rather than in Chapter 9.

The data structures of primary interest in this section are those com-
prising the user's data base, i. e., the structures which are created and
maintained through user - specified creation and update processes, and
from which reports and other structures are derived through user-speci-
fied interrogation processes. Such processes may make use of ancillary
data structures which are not normally considered part of the data base;
for example, updating may make use of transaction files, interrogation
may produce answer files. These ancillary structures are described in
connection with the process which creates or uses them.

A data base is composed of structures or elements of different types, with
structures of one type being composed or constructed from structures of
other types. For example, a certain system might provide structures of
three types: "fields", "records", and "files". "Records" are constructed
from "fields", and "files" are constructed from "records".

Each type of structure has a set of attributes which distinguish it from
other structure types. In the example of the preceding paragraph, attri-
butes of "fields" might be name, length, value, and date of last change
in value. Simflarly, attributes of "records" might be name and date of
addition to the file.

The data structure class of a system can be described by identifying the
types of structures it provides, and for each structure type specifying

G7

69

www.manaraa.com

2 -2

the manner in which structures of this type are constructed
from other structures, and

the attributes of structures of this type and the values which
these attributes may assume.

The description of a data structure class is simplified by postulating a
fixed set of generic structure types, and by equating the structure types
of a given system with these generic types. The following generic
structure types are used for this purpose:

Item

Group

Group relation

Entry

File

Data Base

The general manner in which each of these structure types is used in
composing structures of higher order is shown in Figure 2-1. The types
are further defined in the sequel.

In addition to the generic structure types listed in the preceding paragraph,
systems frequently provide multiple structure types within a generic type.
For example, a system may provide several types of "fields", several
types of "recordsTM, and so forth. In general, two structures can be con-
sidered to be of different type if they have different sets of attributes, or
if they are generated and manipulated according to different sets of rules.

The description of a data structure class is further simplified by intro-
ducing the concept of a structure schema. A schema is a description or
definition of a set of structures of a given type in terms of a certain
subset of the attributes for that type. The attributes selected for this
purpose are called the schema attributes. In Cie previous example, the
schema attributes for the structure type "field" might be name and length.
The schema for a set of "fie).ds" would consist of a value for each of these
schema attributes, e. g. ,

68
70

www.manaraa.com

2-3

STRUCTURE COMPONENT STRUCTURES

item none

group item, group

group relation group

entry group, group relation

file entry, group relation

data base file, group relation

Figure 2-1
Inter-relation of generic structure types

69
71

www.manaraa.com

2-4

name length

EMPNAME 15

implying that each "field" in the set has the name EMPNAME and a value
whose length is 15 characters.

The structures defined or described by a schema are sometimes referred
to as instances of the schema. The following are instances of the schema
in the preceding paragraph:

name length value date of last change in value

EMPNAME 15 'N. M. bPETERSONbb' 700207
EMPNAME 15 'K. R. bLYNNbbblibb' 701212
EMPNAME 15 'J.tFINSTERWALDV 690305

In general, the value of a non-schema attribute will vary from one instance
of the schema to another.

The notion of a schema simplifies the description of a data structure class
by permitting the composition rules for a given structure type to be broken
into two parts:

1) rules for composing a schema; and
2) rules for generating instances of a schema

(sometimes called "populating the schema").

Similarly, the attributes of a structure type can be conveniently divided
into schema attributes and non-schema attributes.

Several of the systems surveyed (DBTG, IMS, and SC-1) provide two
distinct data structure classes, one for the data administrator and one
for the application programmer or self-contained facility user. In the
sequel the data structure classes of these systems are distinguished
when necessary by appending DA (for data administrator) or AP (for
application programmer) to the system acronym. For example, SC-1
(AP) refers to the SC-1 application programmer data structure class.

The description of an AP data structure class includes a description of
constraints placed by the system on the derivation of AP data structures
from DA data structures.

DBTG is intended eventually to have a number of AP data structure classes.
The only one defined to date is a class of structures intended for the COBOL

750

72

www.manaraa.com

2-5

programmer. Except in minor respects, this class is the same as
the COBOL data structure class described herein. Accordingly, no
attempt has been made in the sequel to describe DBTG (AP). The
class described for DBTG is actually DBTG (DA), i. e. , the DBTG
data administrator's data structure class.

2.1 Items

The item is the elementary data structure from which structures
of all other types are ultimately composed. The principal attribute
of the item is value, which may be a number, a string of charac-
ters, a truth value, and so on. Other attributes might include a
name which is used to refer to the item, a value existence indicator
to indicate the presence or absence of a valid value, an access lock
to control access to the item, and so forth.

in data base applications, items are usually associated with the
attributes of an application entity. For example, the entity person
might have attributes name, age, and sex. By associating an item
with each of these attributes, the value of the item can be used to
represent the value of the associated entity attribute.

All systems surveyed possess the item level of data structure.
Figure 2-2 indicates the terms used by the various systems for
items.

In IDS, items are defined but the definitions are in effect immediately
turned over to the COBOL compiler; IDS itself keeps no information
on item attributes.

2. 1. 1 Item types

Most systems provide several types of items. The different types
are distinguished primarily by the kind of values which items of
each type may have. For example, items of type numeric might
be restricted to values which are numbers, items of type alphabetic
to values which are strings of letters, and so on. In general each
item type will have its own characteristic set of attributes.

Multiple item types are generally provided to permit a more natural
representation of application entity attribute values. For example,
it is more natural (and possibly more efficient) to associate the
entity attributes name and age with items of different types (e. g. ,
alphabetic and numeric, respectively) than to associate them with
items of a single type.

71
73

www.manaraa.com

2-6

GIS field

MARK IV field

NIPS/ FFS field

TDMS element

UL/1 item

COBOL elementary item

DB TG data item

IDS data field.

IMS field

SC -.l' field

Figure 2-2
System's term for item

72

www.manaraa.com

2-7

Item types can be classified into three categories: numeric, string,
and other.

All systems possess multiple item types, as indicated in the follow-
ing sections under the appropriate category.

By IMS, item type may be declared by the user, but this information
is not used by the system. The system treats all items as byte
strings.

2.1.1.1 Numeric item types

A numeric item is one whoze value is a number and which can be
used in arithmetic operations.

All systems possess at least one numeriz item type, and a number
pf systems provide several. The different numeric types in a given
system usually reflect different storage representations. For
example, in MARK IV, the "packed decimal" and "zoned decimal"
item types employ the IBM System/360 packed decimal and zoned
decimal representations, respectively. In such cases, the user
is able to control item representation through declaration of item
type. but at the same time must be aware. of any system restric-
tions which may exist on the combining of numeric items of differ-
ent types. In contrast, in systems like UL/1, the user has only
a single numeric type at his disposal; the system determines the
appropriate representation for each item on the basis of the value
initially supplied, and takes care of any necessary subsequent con-
versions between representations.

Figure 2-3 lists the numeric item types available in each system
and gives the range of numbers accommodated by each. Ranges
expressed in bytes allude to the storage representation used for
these item types. The notation "n bytes fixed" signifies an
(8n)-bit two's complement binary number having a range of -2811-1
to +28n-1-1. The notation "n bytes floating" signifies a normalized
hexadecimal floating point number in System/360 format, with a
range of approximately -1075 to 1075. For n=4 the precision is
equivalent to approximately 7 decimal digits and for n=8 the pre-
cision is equivalent to approximately 16 decimal digits.

73

75

www.manaraa.com

2-8

SYSTEM TERM VALUE RANGE
GIS packed decimal

right-justified EBCDIC
1 to 31 digits, signed
1 to 31 digits, signed

MARK IV packed decimal
zoned decimal
fixed binary
floating binary
numeric

1 to 15 digits, signed
1 to 15 digits, signed
1 to 4 bytes fixed
4 bytes floating
1 to 10 digits, signedNIPS/ FFS

TDMS number 1 to 255 characters represent-
ing signed or unsigned integers,
decimal numbers, or numbers
in scientific notation.

UL/ 1 numeric 2 bytes fixed, 4 or 8
bytes floating
1 to 18 characters represent-
ing signed or unsigned integers
or decimal numbers

COBOL numeric

1313TG arithmetic ' Value range is implementor-
defined

IDS numeric 1 or more characters represent-
ing signed or unsigned integers
or decimal numbers

IMS hexadecimal Item representation limited
to 255 bytes
1 to 31 digits, signed
1 to 8 bytes, fixed
4 or 8 bytes, floating

SC-1 decimal integer
binary integer
exponential

1 See 2.1.2.3 for numeric item "subtypes".

Figure 2-3
Numeric item types

76

www.manaraa.com

2-9

2. 1. 1. 2 String Item types

A string item is one whose value is a sequence of characters from
a finite alphabet. String items may be used to represent numeric
entity attributes, but are more typically used to represent alpha-
betic or alphanumeric attributes.

All systems provide at least one string item type. NIPS/FFS has
two string item types: one for fixed length items, the other for
variable length items. COBOL, DBTG, e.nci IDS also have two: one
for items whose values consist of alphabetic characters only, the
other for items whose values are composed of any character allowed
in the system.

Figure 2-4 lists the string item types available ih each system and
gives the length of strings accommodated by each. The figure 255
stems from storage structure considerations. The designation
EBCDIC stands for Extended Binary Coded Decimal Interchange
Code, an 8-bit character coding scheme used in System/360.

2. 1 . 1. 3 Other item types

Item types not properly classified as numeric or string include "date",
"coordinate", and "Boolean".

GIS

Item types "binary" and "floating point" are provided to serve as
"filler" in the containing group. Binary items may have lengths of
1 to 4 bytes, and floating point items may have lengths of 4 or 8
bytes. These types are provided as a user convenience in describing
existing files containing System/ 360-generated binary and floating
point data. GIS itself does not perform binary or floating point opera-
tions, but instead treats all items of types '' ,inary" and "floating
point" as if they were of type "left-justified EBCDIC" (a string item
type).

MARK IV

None.

NIPS /FFS

A "geographic coordinate" item type is provided for expressing geo-
graphic latitude and longitude in degrees, minutes and (optionally)
seconds.

75
77

www.manaraa.com

2-10

SYSTEM TERM VALUE RANGE

GIS left-justified EBCDIC 1 to 255 EBCDIC characters

MARK IV EBCDIC 1 to 255 EBCDIC characters

NIPS/FFS alphameric
variable length

1 or more EBCDIC characters'
1 or more EBCDIC characters'

TDMS name 1 to 255 characters

UL/ 1 alphanumeric 0 or more characters (entry-
level restriction)

COBOL alphabetic

alphanumeric

1 or more alphabetic charac-
ters and blanks

1 or more alphanumeric charac-
ters

DBTG character
bit

1 or more characters
1 or more bits

IDS alphabetic

alphanumeric

1 or more alphabetic charac-
ters and blanks

1 or more alphanumeric
characters

IMS alphanumeric 1 to 255 characters

SC-1 alphanumeric
bit string
general

1 to 255 EBCDIC characters
1 to 2040 bits
1 to 254 bytes

1 Length limited only by storage structure.

Figure 2-4
String item types

76

78

www.manaraa.com

2 -11

TDMS

A "date" item type is provided foi calendar dates of the form
mm/dd/yy where mm = month (1 to 12), dd = day (1 to 31), and
yy = year (1 to 99).

UL/ 1

A "date" item type is provided for calendar dates in the forms
gear, morth, da> , (year, day of year>, or <rear>.

A "coded" item type is provided for items whose values, consisting
of one to 8 non-blank characters, are to be transformed on output
into strings of one or more characters, through a user supplied
decoding mechanism.

COBOL

None.

DBTG

A "database-key" item type is provided to hold system-supplied
identifiers for "record" instances (see 2. 2. 3. 3).

IDS

None.

IMS

None.

SC-1

None.

77

79

www.manaraa.com

2-12

2. 1.2 Item schema attributes

2. 1. 2. 1 Names

Systems generally provide facilities for assigning names, numbers,
or other identifiers to items. These facilities may include assigning
synonyms and external names, such as column headings in reports.

All of the systems surveyed require the user to declare a name "or
each item schema. All systems provide for assigning alphanumeric
names, and two systems (TDMS and UL/1) also require user-de-
clared item numbers.

The systems differ with regard to the requirement for item name
uniqueness. In some systems, item names need only be unique with-
in the containing group. Since the same name may be used for a
different item in another group, some form of qualification must be
provided for referring unambiguously to a given item. In COBOL,
for example, item references may be qualifified by appending the
phrase "IN group-name" to the item name.

Five systems (GIS, MARK IV, COBOL, IDS, and IMS) make specific
provision for item synonyms, i. e. , names which may be used inter-
changeably with the first item name. In a number of other systems,
an item can indirectly be given a synonym by defining a group com-
prised of the single item, and referring to the item by the group
name. However, this is not the principal intent of this facility,
and strictly speaking is not a synonym facility.

Except for TDMS, all of the self-contained systems provide for a
separate user-supplied output heading for each item. In TDMS, item
names (which may be as long as 255 characters) are used to identify
output values. None of the host-language systems provides for out-
put headings.

78

so

www.manaraa.com

2-13

NAME TYPE UNIQUE
WITHIN SYNONYMS

OUTPUT
HEADINGALPHANUMERIC NUMBER

CIS 1 to 8 char. none group yes 1 to 132 char.

MARK IV 1 to 8 char. none entry yes 1 1 to 126 char.

NIPS/FFS 1 to 7 char. note entry no 1 to 69 char.2

TDMS 1 to 255 char. 1-32755 entry no no

UL/1 1 to 8 char. 1-255 entry no 1 to 160 char.

COBOL 1 to 30 char. none group yes3 no

DBTG 1 to 30 char. none group no no

IDS 1 to 30 char. none group yes no

IMS 1 to 8 char. none group
1

yes no

SC -1 (DA) 2 to 31 char. none group no no

SC-1(AP) 2 to 31 char. none entry no no

1Through item redefinition.
'In the terminal processor (QUIP) only.
3 For fixed length items in non-repeating groups only.

Figure 2-5

Item naming

79
81

www.manaraa.com

2-14

2. 1. 2. 2 Value class attributes

The value class of an item is the set of values that may be assigned
to the item. For example, the value class of an item named SEX
might be the set {1.M', 'F), implying that the value of SEX must be
either 'M' or 'F'.

The value class of an item is determined primarily by the item's
type. In addition, the item may ha,,re one or more value class
attributes which serve to further constrain the set of values which
the item may assume, For example, a string item might have the
attribute length, specifying the number of characters required in
item value. The item might also have the picture attribute which
specifies not only the permissible length of an item value but also
the characters permitted at each position in the value.

Typical value class attributes are:

length or length range of string item values
picture of string item values
precision of numeric item values (for example,

number of decimal places)
range of numeric item values
lists of discrete item values
expressions which may be evaluated in specific

context to yield a value, such as the expression
LENGTH IS ITEMLENGTH

which becomes, in the context of ITEMLENGTH=6,
LENGTH IS 6

Value class attributes are used to validate values being supplied for
data base items. The mechanics of doing this are described in
Chapters 5 and 6.

Figure 2-6 lists the common value class attributes of the numeric
item types in the systems surveyed. The length attributes fixed
length (L) and length range (R) are typically expressed in storage
structure units - for example, bytes - and to this extent the user
is aware of the representation used for numeric items. A fixed
length attribute implies that the values in all instances of the item
schema have the same length. A length range attribute implies
that the value length may vary between user-specified limits -
typically zero and some maximum number. No length attribute
also implies that the value length is variable, but with limits on the
variability being determined by the system.

80
82

www.manaraa.com

2 - 1 5

ITEM TYPE

L ti

E-i P:1
1-1

0 4:4

W E-i
a<4
L
L
L
L
L
L

L

ts1
cd

4-Y4

al
yes
yes
no
no
no
no

no

z
'4 0
=4 1--1

4
W 0
A 44
no
no
yes
yes
yes
yes

no

WW
°,4 Z

%

yes
yes
no
no
no
no

no

W

(-I

,.-,

yes
yes
no
no
no
no

no

Z
0

-t

H
H

A",4 m

yes
yes
no
no
no
no

yes

GIS packed decimal
right-justified EBCDIC

MARK W packed decimal
zoned decimal
fixed binary
floating binary

numericNIPS/FFS

TDMS. number none yes no yes yes no

UL/ 1 numeric nore no no yes yes no

COBOL numeric L or R yes yes yes no no

DBTG arithmetic L or
none

L

yes

yes

yes

yes

yes

yes

no

no

yes

noIDS numeric

IMS hexadecimal
packed decimal
decimal
integer
exponential

L
L
L or R
L or R
L

no
no
no
no
no

no
no
no
no
no

no
no
no
no
no

no
no
no
no
no

no
no
no
no
no

SC-1 (DA)

SC -1 (AP) decimal
integer
exponential

L
L
L

no
no
no

no
no
no

no
no
no

no
no
no

no
no
no

1L=fixed length
R=Irngth range

Figure 2-6
Numeric item value class attributes

81''

83

www.manaraa.com

2 -16

Figure 2-7 gives similar value class attributes for the system's
string item types. For string item types, the length attributes are
expressed in data structure units - e. g. , characters - which in
many cases happen to coincide with storage units, e.g., one
character equals one byte.

Other value class attributes not shown in the figures are as follows

UL-1

The value class attributes shown in the tables are specified through
the same language that is used to specify conditional expression
(see Chapter 4). Thus, value class attributes considerably more
complex than these are possible.

For items of type "coded", the value list attribute is provided.

SC-1 (DA)

An "optional value" attribute is provided for indicating whether a
value may be missing in an instance of a fixed length item schema.

2. 1. 2. 3 Other item schema attributes

Other possible schema attributes for an item include:

the units in which values are expressed
(feet, pounds, dollars, etc.)

usage of item values (for example, "computational"
or "display")

output editing attributes such as edit masks
input and output conversion attributes
value synonym lists (such as MALE for 'W,

FEMALE for 'F')
subitem schemas (a subitem is a string type

item whose value is a substring of another
string type item)

access locks for controlling access to item values

Figure 2-8 lists other item schema attributes provided in the systems
surveyed. Not included in the figure are the following attributes:

COBOL

The "justified" attribute is used to specify non-standard justifica-
tion of string-type item values.

82
81

www.manaraa.com

2 -17

ITEM TYPE

En

HE-,

CA
E-I ,--,HC
0 1:4
Z E-1
W E-1

w
tx

E-1

a

w w
P 0
1-1 Z

w
H

1-1 4
,1

z
0 rxi
E-, 4
.t E-I

A
1.-1

-1 0
<4 tz4

GIS left-justified EBCDIC L yes yes yes yes

MARK IV EBCDIC L or R no

J

no no no

NIPS/ FFS alphameric
variable length

L
none

no
no

no
no

no
no

yes
no

TDMS name none yes yes yes no

UL/ 1 alphanumeric L or R yes yes yes no

COBOL alphabetic
alphanumeric

L or R
L or R

yes
yes

yes
yes

no
no

no
no

DBTG character

bit

L or
none
L or
none

yes

yes

yes

yes

no

no

yes

yes
IDS alphabetic

alphanumeric
L
L

yes
yes

yes
yes

no
no

no
no

IMS alphanumeric L no no no no

SC-1 (DA) alphanumeric
bit-string
general

L or R
L
L or R

no
no
no

no
no
no

no
no
no

no
no
no

SC-1 (AP) alphanumeric
bit-string
general

L
L
L

no
no
no

no
no
no

no
no

i no

no
no
no

1 L=fixed length
R=length range

Figure 2-7
String item value class attributes

83'
85

www.manaraa.com

2-18

SUBITEMS
OUTPUT EDIT

MASK
INPUT/OUTPUT
CONVERSION

ACCESS
LOCKS

GIS yes yes routine,table query,
update

MARK IV no yes table none

NIPS/FFS no ye s routine, table none

TDMS yes no none none

UL/ I yes 1 no tableZ none

COBOL no yes none none

DB TG no no yes query,
store,
modify

IDS no yes none none

IMS no no none none

SC-1 no no none access,
query,
update

1For item type "date" only.
2Output conversion only.

Table 2-8
Other item schema attributes

84

86

www.manaraa.com

2 -19

One or more "condition-names" may be associated with an item
schema. Associated with each condition-name is a set of values
or value-ranges for which the condition-name may be used as a
synonym. For example, for the item AGE, the condition-name
YOUNG might be defined for values less than 40 and the condition-
name OLD for values over 40.

An item is multiple-valued (see 2.1. 3) if it has the OCCURS attri-
bute. The OCCURS attribute specifies the number of instances of
the schema that can occur within a given parent group. This
number may be a constant or a variable. Multiple-valued items
must be fixed length.

A multiple-valued item schema may have the same attributes as a
repeating group schema, namely, a "sequencer" (which is the item
itself) and an "index" (see 2. 2. 3. 2).

DBTG

An item schema may have the OCCURS attribute as in COBOL.
Unlike COBOL, multiple-valued items need not be fixed length.

For "numeric" item types, one attribute from each of the following
sets may be associated with an item:

fixed,
decimal)

fixed, floating)
(real, complex)

The result is eight numeric subtypes (e. g. , "binary fixed real").

A "source" attribute specifies that all attributes of an item except
name are to be the same as the attributes of a specified "source"
item. The source item must occur in a parent "record". The value
of an item with the "source" attribute cannot be changed independently
of its source item.

A "result" attribute specifies that the value of an item is to be de-
rived by executing a user-supplied procedure. If the attribute is
"actual result'`, "the item value is computed whenever a change
occurs in the value of any item in the procedure. If the attribute
is "virtual result", the item value is computed whenever the item
is referred to. Items referred to in the procedure must occur in
the same group as the derived item, or in a dependent assembly of
this group.

85

87

www.manaraa.com

2-20

IMS

The relative position ("displacement") of the item schema in the
group schema is a data structure attribute.

SC-1

Two levels of access locks are provided: a "security restriction
level" which controls access of any kind; and "user access class"
and "user modification class" for controlling interrogation and
update, respectively.

2. 1. 3 Other item attributes

The principal non-schema attribute of an item is value. Other
non-schema attributes include:

indicators for indicating non-existence of an item
value (for example, because it is not known or
it has been deleted)

date a: -1 time of last change to the item value
identification of transaction or program which

supplied the current item value

In addition, any attributes listed in 2.1.2 which in a given system
are allowed to vary from one instance of an item schema to another
would be non-schema attributes.

The non-schema attributes of an item are normally single-valued.
However, some systems provide for multiple-valued items, i.e.,
items whose non-schema attributes may be multiple-valued. In
particular, the value attribute of the item may have multiple values.
An instance of a multiple-valued item schema consists of n values
for each of the non-schema attributes of the item, where n may
be zero or more. Such an instance differs from n instances of a
single-valued item schema, in that the former may occur in a
single group, whereas the latter must occur in n different groups.

In addition to value, the following non-schema attributes are pro-
vided in the systems surveyed:

GIS

Null item values are provided.

88

86

www.manaraa.com

2-21

MARK IV

None.

NIPS / FFS

None.

TDMS

Null item values are provided.

UL/1

Null item values and multiple-valued items are provided. An
optional date stamp may be associated with each item.

COBOL

Multiple-valued items (fixed length only) are provided.

DBTG

Multiple-valued items are provided.

IDS

None.

IMS

None.

Sc-'

Null item values are provided for fixed-length items. For variable-
length items, a length of zero signifies a null value.

A system identifier, the "item position code", is associated with
each item, and may be used to access items.

87
89

www.manaraa.com

2-22

2.2 Groups

A group is a set of items and possibly other groups. A group
composed solely of items is called a simple group; a group con-
taining both items and groups is called a compound group.

A simple group is a way of collecting together a set of items and
giving the set a name and other attributes of its own. The group
may correspond to an application entity, with the items of the
group corresponding to application entity attributes. For example,
the group PERSON composed of items NAME, NUMBER and
SALARY might correspond to an employee with the attributes
name, number, and salary.

A simple group is also a way of referring to the "collective value"
of a set of string-type items. The collective value can be defined
as the concatenation of the constituent item values in some pre-
scribed order. Thus, if the string items YEAR, MONTH, and DAY
tave values "70", "12". and "25", respectively, the group DATE =
YEAR, MONTH, DAY) would have the value "701225". The

grouping of string items achieves the same effect as the partitioning
of a string item into subitems (see 2. 1. 2. 3), and in some systems
no distinction is made between the two kinds of facilities.

A simple group schema consists of zero or more distinct item
schemas. Such a schema can be portrayed by a tree-like diagram
in which the root stands for the group and the leaves stand for the
items. Figure 2-9 illustrates the schema for the group PERSON.

An empty group schema is useful for collecting under a single parent
a set of group schemas having no items in common.

An instance of a simple group schema contains one instance of each
constituent item schema. The instance can also be portrayed as a
tree, except that in this case the leaves stand for item instances.
Figure 2-10 shows two instances of the group schema PERSON.

A compound group provides a way of collecting together a set of
items and a set of groups, and giving the new set a name and other
attributes of its own. A reference to a compound group is a
reference not only to its immediate constituent items, but to the
items in all of its inclu ed groups as well. Thus, if the group
SKILL = (CODE, TITLE were added to the simple group PERSON =
(NAME,NUMBER,SALARY3, the result would be the compound group

PERSON = (NAME, NUMBER, SALARY, SKILL = (CODE, TITLES].

90

88

www.manaraa.com

2 -23

PERSON

NAME NUMBER SALARY

Figure 2-9
A simple group schema

89
91

www.manaraa.com

2-24

PERSON

NAME
H. M. PETERSON

I_

NUMBER
45584

PERSON

SALARY
28000

NAME
K. R. LYNN

NUMBER
32579

SALARY
6000

Figure 2-10
Two instances of a simple group schema

90
92

www.manaraa.com

2-25

A reference to PERSON would now be equivalent: to a reference to
NAME, NUMBER, SALARY, CODE, and TITLE.

The items which are the immediate constituents of a compound
group are called principal items. Similarly, the groups which are
the immediate constituents of the compound group are called princi-
pal groups. In the compound group

PERSON = (NAME, NUMBER, SALARY, SKILL = (CODE, TITLE)) ,

items NAME, NUMBER, and SALARY are principal items, and
the group SKILL is a principal group.

A compound group also provides a way of establishing a hierarchic
relation between two sets of items, hence between the application
entities to which the sets of items correspond. In particular, the
items in a principal group of a compound group stand in a sub-
ordinate relation to the principal items in that compound group.
Thus, in the compound group

PERSON = (NAME, NUMBER, SALA RY, SKILL = (CODE, TITLE)) ,

the items CODE and TITLE (representing the entity skill) are
subordinate to the items NAME, NUMBER and SALARY (repre-
senting the entity person).

A compound group schema consists of zero or more distinct item
schemas and one or more distinct group schemas. A principal
group schema may be either simple or compound. Thus, groups
may be "nested" to any depth in a compound group. Figure 2-11
illustrates the schema for the compound group PERSON, consisting
of the item schemas NAME, NUMBER, and SALARY, and the
(simple) group schemas SKILL and BIRTH.

Principal group schemas may be of two kinds: repeating and non-
repeating. A repeating group schema is one which may have a
variable number of instances for each instance of the containing
group. By contrast, a non-rIpeating group schema is one which
has just one instance per instance of the containing group. In
Figure 2-11, SKILL is a repeating group schema since the number
of skills possessed by a person can vary from person to person.
BIRTH, on the other hand, is a non-repeating group schema, since
every person has exactly one birthdate.

A repeating group consisting of a single item affords an alternative
way of achieving a mult-ple-valued item (see 2.1.3).

91
93

www.manaraa.com

2-26

PERSON

NAME NUMBER SALARY SKILL

CODE TITLE

BIRTH

MONTH DAY

Figure 2-11
A compound group schema

92
94

YEAR

www.manaraa.com

2-27

An instance of a compound group schema consists of

one instance of each principal item schema, plus
one instance of each nun-repeating principal group

schema, plus
zero cr more instances of each repeating principal

group schema.

Figure 2-12 illustrates an instance of the compound group schema
PERSON shown in Figure 2-11.

In a compound group, the set of instances of a repeating principal
group schema is referred to as an assembly, and the individual
instances in the set are called assembly members. In a repeating
group, a set of one or more items whose values serve to uniquely
identify the members of an assembly is called the group identifier.
Similarly, a set of items whose values serve to order the members
of an assembly is called the group sequencer.

In Figure 2-12, the item CODE serves as identifier for the repeating
group SHILL, implying that no two members of a SKILL assembly
will have the same value of CODE. The SKILL assembly in the
PERSON group instance for N. M. Peterson contains three members.

All systems surveyed possess at least one structure type corres-
ponding to the group level, and some have as many as four. Figure
2-13 indicates the terms used by the various systems for group.

2.2.1 Group types

Many systems provide groups of several types, i.e., groups which
have different.rulesof composition or which are used differently in
composing other structures. Thus most systems treat repeating
and non-repeating groups as different group types. A given system
will not normally treat simple and compound groups as separate
types, since the simple group is a degenerate case of the compound
group.

Figure 2-14 lists the various group types provided by each of the
systems, and classifies each as simple or compound, and repeating
or non-repeating. Each of the types shown has different rules of
composition, or use in higher level structures, as indicated in the
sequel.

93
95

www.manaraa.com

NUMBER!
45584

2-28

PERSON]

NAME
N.M.

PETERSON
SALARY

28000
SKILL SKILL SKILL

[CODE
6130

TITLE
BRANCH

MGR.

CODE
6040

TITLE
REGL.
MGR.

CODE
6625

BIRTH

H
SALES-
MAN

MONTH
06

Figure 2-12
An instance of a compound

group schema

94

96

DAY
07

YEAR
18

www.manaraa.com

GIS

2-29

segment

MARK IV

NIPS/ FFS

segment

set, group

TDMS

UL/ 1

COBOL

DB TG

IDS

group

group

group item

record, data aggregate

record, group item

IMS

SC-1

segment

statement, record

Figure 2-13
System's term for group

95

97

www.manaraa.com

2-30

SYSTEM TERM
SIMPLE/
COMPOUND

REPEATING/
NON-REPEATING

GIS segment simple repeating

MARK IV segment simple repeating

NIPS/FFS fixed set
periodic set
variable set
group

compound
compound
simple
compound

non-repeating
repeating
non-repeating
non-repeating

TDMS repeating group compound repeating

UL/ 1 repeating group
naming group

simple
simple

repeating
non-repeating

COBOL group item compound repeating or
non-repeating

DBTG data aggregate

record

compound

compound

repeating or
non-repeating
repeating

IDS group item
record

compound
compound

simple

non-repeating
repeating

repeatingIMS (DA) physical segment

IMS (AP) logical segment simple repeating

SC-1 record
statement

compound
compound

repeating
non-repeating

Figure 2-14
Group types

96

98

www.manaraa.com

2-31

2.2.2 Group composition

2.2.2.1 Schema composition

Group schema composition rules will generally depend on group
type. The rules include

limitation on the number and type of principal item
schemas in a group schema

limitation on the number and type of principal group
schemas in a compound group schema

limitation on the depth of nesting in a compound
group schema

GIS

A group schema is composed of one or more item schemas.

MARK IV

A group schema is composed of one or more item schemas.

NIPS/ FFS

A "group" schema is composed of one or more fixed-length item
schemas and "group" schemas.

The "fixed set" and the "periodic set" have the same rules of compo-
sition: a group schema is composed of one or more fixed-length
item schemas and "group" schemas, and optionally a single "variable
length?' item schema. The total number of "group" schemas (includ-
ing nested "groups") cannot exceed 50, and the total number of
item and "group" schemas cannot exceed 100.

A "variable set" is composed of one or more item schemas and
group schemas.

TDMS

A group schema is composed of one or more item schemas and group
schemas.

UL/ 1

A group schema is composed of one or more item schemas.

97
99

www.manaraa.com

2-32

COBOL

A group schema is composed of one or more item schemas and
group.schemas. If a group schema i repeating (see 2.2.3.2), it
cannot contain any variable length item schemas or variably
repeating group schemas.

DBTG

A "data aggregate" schema and a "record" schema are both com-
posed of one or more item schemas and "data aggregate" schemas.
ConstitUent "data aggregate" schemas may be repeating.

IDS

A "group item" schema and a "record" schema are both composed
of one or more item schemas and "group item" schemas.

IMS (DA)

A group schema is seen by the user as a sequence of bytes which may
be arbitrarily partitioned into item schemas using the facilities of
the application programming language. In addition, IMS itself pro-
vides for item definition. Item definitions are required only for
items which serve as group identifiers.

Any consecutive set of bytes in the group schema may be defined as
an item schema. A given byte may be a component of more than
one item schema, or of no item schema.

A maximum of 255 item schemas may be defined in a group schema,
and a maximum of 1000 item schemas may be defined in an entry
schema.

If the group schema is a dependent in a "logical" group relation
schema (see 2. 3. 1), two sets of item schemas may be defined, one
for the group as viewed from the "physical" parent and the other
for the group as viewed from its "logical!' parent.

IMS (AP)

A group schema in the AP data structure is derived from one or two
group schemas in the DA data structure. The first of these schemas
is called the "primary source" and the second is called the "secondary
source". The secondary source is optional; if present, the primary

98
100

www.manaraa.com

2-33

source must be a dependent in a "logical" group relation, and the
secondary source must be the parent of the primary source by
either a "physical" or "logical" group relation. The primary and
secondary sources need not occur in the same DA entry schema.

A group schema is composed of one set of bytes from the primary
source, and one set of bytes from the secondary source. One of
the following may be selected from each source:

1 the entire source
2) the identifier within the source

The set from the primary source precedes that from the secondary
source.

A group schema has the same item schemas as its source(s).

Sc-'

A group schema is composed of one or more item schemas and
group schemas.

2. 2. 2. 2 Instance composition

The composition rules for group instances include any limitations
imposed by the system on the composition process. An example
is the limitation on the number of members in an assembly, or on
the ordering of assembly members.

GIS, MARK IV, NIPS/FFS, TDMS, UL/1, COBOL, DBTG, IDS,
IMS, SC-1

An instance of a group schema consists of

one instance of each principal item schema, plus
one instance of each non-repeating principal group

schema, plus
zero or more instances of each repeating principal

group schema.

99

101

www.manaraa.com

2-34

2. Z. 3 Group attributes

2. 2. 3. 1 Names

Provision is normally made for assigning names or other identifiers
to groups. A group name is used to refer collectively to the items
in the group, or to qualify an otherwise ambiguous reference to an
item in the group.

In most systems, group names are alphabetic. A few systems re-
quire group numbers to be assigned, either in place of or in addi-
tion to alphabetic names. See Figure 2-15.

Only COBOL and IDS make explicit provision for group synonyms
(through the RENAMES facility, which is restricted to non-repeating
groups). In other systems, the effect of synonyms can often be
achieved through group re-definition.

2. 2. 3.2 Other schema attributes

Other possible schema attributes of a group include

item sets which serve in a special capacity for the
group, such as group identifier or group sequencer

access locks for controlling access to the contained
item values

codes which identify the programs making use of the
group

Figure 2-16 indicates the facilities provided in the surveyed sys-
tems for associating sequencers with repeating groups, and whether
or not the sequencer may or must also be the group identifier (i.e. ,
whether the sequencer values in an assembly must be unique). None
of the systems provide for independent sequencers and identifiers.

Other schema attributes not shown in the figure are as follows:

GIS

A group schema must contain one "count" item schema for each de-
pendent group schema. The value of a count item is the number of
instances of the dependent group schema existing at any moment.
It must be declared by the user, but is maintained by the system.

102

www.manaraa.com

2-35

GROUP NAME TYPE UNIQUE
WITHIN SYNONYMSTYPE ALPHA NUMBER

GIS all 1 to 8 char, none file no

MARK IV all none 1-99 file no

NIPS/FFS
fixed set
periodic set
variable set
group

/Ix,/
none
1 to 7 char.
1 to 7 char.

0
1-255
(1)
none

file
file
file
file

no
no
no
no

TDMS all 1 to 255 char. 1-32755 file no

UL/1 repeating gr.
naming gr.

all

1 to 8 char.
1 to 8 char,

1 to 30 char.

none
none

none

file
file

group

no
no

yes 2COBOL

DBTG data aggregate
record

1 to 30 char.
1 to 30 char.

none
none

group
file

no
no

IDS group item
record

1 to 30 char,
1 to 30 char.

none
1-999

group
file

yes2
no

IMS all 1 to 8 char. none file no

SC-1 all 2 to 31 char. none group no

1Consecutive numbers following the highest "periodic set" number are
assigned by the system.

2For non-repeating groups only.

Figure 2-15
Group names

101.
103

www.manaraa.com

2-36

REQ'D/OPT.
NO. OF
ITEMS ASC. /DESC.

USE AS
IDENTIFIER

GIS requiredl 1 to 7 A or D separately optional

MARK IV required 1 to 9 A required

NIPS / FFS required2 1 or.more 3
A required

TDMS no sequencer or identifier attribute provided

UL/ 1 no sequencer or identifier attribute provided

COBOL optional 1 or more A or D no

DBTG no sequencer Jr identifier attribute provided4

IDS no sequencer or identifier attribute provided4

IMS optional5 i A required

SC-1 optional6 or more A or D separately no

1 Sequencer is optional in groups at lowest level in entry.
2If user does not specify a sequencer, system supplies a 4-character

serial number.
3 Total length of group sequencer and entry sequence must not exceed

244 characters.4Sequencer and identifier attributes may be associated with the group
relation(s) in which the "record" is a dependent (see 2. 3. 3. 2).

5Sequencer is required in entry-defining group of indexed files.
6Sequencer is for documentation purposes only.

Figure 2-16
Repeating group sequencer attribute

102'
1:

www.manaraa.com

2-37

MARK IV

A group schema must contain a "count" item schema for each de-
pendent repeating group schema, as in GIS.

NIPS/ FFS

A "group" may be assigned one of the types "rumeric", "alpha-
numeric", or "coordinate" as long as it doesn't conflict with the
types of the constituent items.

TDMS

None.

UL/ 1

None.

COBOL

A group schema is repeating if it has the OCCURS attribute. The
OCCURS attribute specifies the number of instances of the schema
that can occur within a given parent group. The schema is fixed
repeating if this number is a constant, and variably repeating if
the number is a variable.

An "index" may be associated with a repeating group schema for
purposes of accessing the instances of the schema.

DBTG

A "data aggregate" schema may have the OCCURS attribute as in
COBOL.

"Record" schema attributes include:

(1) a "location mode" which determines the method used to
access the "record" ("direct" through a system
identifier, "via" a relation with another "record", or
through a system identifier "calculated" from a ran-
domizing algorithm).

(2) for "location mode" = "via", the name of the group relatio:a
used to access the "record" (see 2.3.2. 1).

103
105

www.manaraa.com

IDS

2-38

the "areas" within which the instances of the "record"
schema occur (see 2. 7).

a procedure to be executed whenever the "record" is
subject to one or more of a fixed set of operations,
such as "insert", "remove", etc.

access locks for one or more of a fixed set of operations
on a "record".

The "record" schema has the following attributes:

(1) an "access type" which is like the "location mode" in
DBTG, except that "direct" and "via" are known as
"primary" and "secondary", respectively.

(2) for "access type" = "secondary", the name of the group
relation used to access the "record".

(3) access locks.

IMS (DA)

The group schema requires a length attribute, since the declaration
of items is optional. Other attributes include insert, replace and
delete rules for groups which participate in "logical" group relations,
and ordering rules for groups with non-unique sequencer or no se-
quencer.

A group which is a dependent in a "logical" group relation may have
two sets of schema attributes, one for the "physical" group relation
and one for the "logical" group relation in which it participates.

IMS (AP)

The sequencer/identifier from the group's primary source, or the
concatenated sequencer/identifiers frctn its primary and secondary
source, becomes the group's sequencer/identifier. Other attributes
include length; insert, replace and delete rules; and ordering rules.
The latter two attributes are inherited from the group's primary
source.

In the context of a given program, a group may have an access type
of "read-write" or 'read only".

104,

106

www.manaraa.com

2-39

SC-1

A repeating group schema assembly, called a "subfile", may be
assigned a name of the same form as the group name. The assembly
name is used for referring to all members of the assembly collec-
tively.

2. 2. 3. 3 Non-schema attributes

Non-schema attributes of groups include

date and time of group insertion
o count of references to the group

GIS, MARK IV, NIPS/FFS, TDMS, UL/1, COBOL, IMS

None.

DBTG

A system identifier, a "database key", is associated with each
"record". The identifier may be used to access "records" with
"location mode" equal to "direct".

IDS

A system identifier, a "record reference code", is associated with
each "record". It may be used to access records with "access
type" equal to "primary".

SC-1

A system identifier, the "item position code", is associated with
each group, and may be used to access groups.

105-
107

www.manaraa.com

2-40

2.3 Group relations

A group relation is a relation or mapping between two sets of groups.
The groups in the first set are called parent groups, while those in
the second are called dependent groups. A group relation may have
a name and other attributes of its own.

The group relation provides a way of relating groups, hence of re-
lating the application entities to which these groups correspond. For
example, given a set of PERSON groups:

CPERSON(G. J. GUTTMAN), PERSON(R. J. WALTERS)3

and a set of SKILL groups:

(SKILL(1110),SKILL(1120), SKILL(1130), SKILL(1135)),

the following group relation can be established to relate people to the
skills which they possess:

[<PERSON(G. J. GUTTMAN),SKILL(1110)> ,

<PERSON(G. J. GUTTMAN), SKILL(1135)> ,

<PERSON(R. J. WALTERS), SKILL(1110)> ,

<PERSON(R. J. WALTERS), SKILL(1120)>, j

In this relation, the PERSON groups are the parent groups, and the
SKILL groups are the dependent groups. Note that all groups do not
necessarily have to participate in the relation; in particular, SKILL
(1130) is not associated with any PERSON.

A group relation also provides a way of establishing a hierarchic
relation between two sets of items. In particular, the items in a
dependent group stand in a subordinate relation to the items in an
associated parent group. In a hierarchic group relation, each de-
pendent group must be associated with one parent group; the depend-
ent group cannot exist meaningfully by itself. The following it, a
hierarchic group relation between a group representing a person
and a set of groups representing the degrees he has earned:

<PERSON(G. J. GUTTMAN), DEGREE(AB, 1955, PRINCETON)>
t.<PERSON(G. J. GUTTMAN), DEGREE(MS, 1957,MIT)

The hierarchic relation facility provided by a group relation is equiva-
lent to that provided by a compound group (see 2.2), except for the
following:

106
108

www.manaraa.com

2-41

1) In a compound group, a group may be subordinated to a
single set of items only (the principal items) whereas in
a group relation a group may be subordinated to many
sets of items (parent groups).

2) In a compound group, the items to which a group is sub-
ordinated (i.e., the principal items) do not have a col-
lective name (recall that the compound group name refers
to all contained items). In a group relation, on the other
hand, each set of items to which a group is subordinated
may have a name of its own, namely, the parent group
name.

The relation expressed in a group relation is known as a binary
relation, sir'ce it expresses a relation among the objects of two
sets. The more general ca,:e of the n-ary relation, i.e., the re-
lating of objects from n sets, is not considered further here
because few (if any) systems make explicit provisions for such
relations.

A group relation schema consists of one or more parent group
schemas and one or more dependent group schemas. Such a
schema can be portrayed as a directed graph containing a node for
each parent and dependent group schema, and a single forked arc
with multiple tails and heads - a tail leaving each parent group
schema and a head entering each dependent group schema. The
arc can be labelled with the relation name, if it has one.

Figure 2-17 illustrates a common class of group relation schema
in which there is only a single parent group schema and a single
dependent group schema.

Figure 2-18 illustrates a group relation schema in which the same
group schema serves as both parent and dependent. Such schemas
are used to represent relations among a homogeneous set of entities.

Figure 2-19 illustrates a group relation schema having multiple de-
pendent group schemas. This class of schema is useful when it is
necessary to treat the instances of several different group schemas
either as members of a single set or as members of several differ-
ent sets, depending on the context. Thus, the schema of Figure
2-19 will permit the useful skills and useless skills of a person to be
processed independently in one context (e. g. , list all useful skills and
all useless skills) and jointly in another (e. g. , list all skills in order
of decreasing proficiency).

107
109

www.manaraa.com

2 -42

PERSON1

HAS SKILL

SKILL

Figure 2 -17
A group relation schema

PERSON
WIFE

Figure 2-18
A group relation schema

with one group schema

108
110

www.manaraa.com

2-43

Figure 2-19
A group relation schema with

multiple dependent group schemas

109

111

www.manaraa.com

2-44

An instance of a group relation schema consists of one or more
instances of each parent and dependent group schema, with each
parent group instance being optionally paired with one or more
dependent group instances. If the group relation is non-hierarchic,
each dependent group instance may be optionally paired with one or
more parent group instances. If the group relation is hierarchic,
each dependent group must be paired with one parent. Figures 2-20,
2-21, and 2-22 illustrate instances of the group relation schemas
of Figures 2-17, 2-18, and 2-19, respectively.

In analogy with compound groups, a dependent group schema in a
group relation schema may be repeating or non-repeatina, depend-
ing on whether there may be a variable number or just one instance
of the group schema paired with a given parent group. Also, the
dependent groups paired with a given parent group are called an
assembly, and may be identified or ordered by the values of one or
more identifier or sequencer items. Unlike an assembly in a com-
pound group, however, an assembly in a group relation may be
composed of instances of different group schemas. For example,
in Figure 2-22, the assembly associated with PERSON(G. J. GUTTMAN)
consists of USEFUL SKILL(1110) and USELESS SKILL(X173).

In a given system, the groctp relation may be an explicitly identified
structure type, or it may be an implied part of a larger structure
type. In either case, the structures possible in the system can be
described by stating the restrictions it places on the composition of
group relation schemas and group relation instances. Examples 'of
group relation schema restrictions are

Single parent group schema and single dependent group
schema only

Parent group schema(s) must be distinct from dependent
group schema(s) (i. e. , no "loops").

Examples of group relation instance restrictions are

Parent group instance and dependent group instance must
be distinct. For example, the schema

PERSON

might be allowed, but not the

PERSON
(N. M. PETERSON)

112

110`

WIFE

instance

WIFE

www.manaraa.com

2-45

PERSON
(G. J. GU TTMAN)

PERSON
(R. J. WALTERS)

Figure 2-20
An instance of the group relation schema

of Figure 2-17

PERSON
(N. M. PETERSON)

WIFE PERSON
(K. R. PETERSON)

Figure 2-Z1
An instance of the group relation schema

of Figure 2-18

113

111

www.manaraa.com

PERSON
G. J.
GUTTMAN)

HAS
SKILL

2-46

PERSON
(R. J.
WALTERS)

USEFUL
SKILL
(1110)

L.
SKILL
(X173)

USEFUL
SKILL
(1120)

Figure 2-22
An instance of the group relation schema

of Figure 2-19

112

USEFUL
SKILL
(1130)

www.manaraa.com

2-47

A dependent group instance has no more than one
associated parent group instance. Thus:

Allowed Not Allowed

A A A A

B
\I

B B B B B

Of the systems surveyed, only DBTG, IDS and IMS make explicit
provision for group relations. In three other systems GIS,
MARK IV, UL/1 - the group relation structure is implied in the
systems' facility for tree structures. In the remaining systems,
the group relation structure is not provided. Table 2-23 illustrates
the situation.

2.3..1 Group relation types

A system may provide more than one type of group relation, i. e.,
group relations which have different rules of composition or are
used differently in composing other structures.

GIS, MARK IV, UL/1, IMS(AP)

Each of these systems provides implicitly a single type of group
relation.

DBTG

DBTG provides a single group relation type, the "set".

IDS

IDS provides two group relation types, referred to as the "chain"
and the "CA LC chain".

IMS (DA

Two group relation types are provided, "physical" and "logical".

NIPS/FFS, TDMS, COBOL, SC-1

Not applicable.

113
115

www.manaraa.com

2 -48

EXPLICIT/IMPLICIT
STRUCTURE

SYSTEM
TERM

GIS implicit none

MARK IV implicit none

NIPS / FFS structure not provided none

TDMS structure not provided none

UL/ 1 implicit none

COBOL structure not provided none

DB TG explicit set

IDS explicit chain

IMS(DA) explicit relationship

IMS(AP) implicit none

SC- 1 structure not provided none

Figure 2-23
System's term for group relation

114
116

www.manaraa.com

2-49

2. 3.2 Group relation composition

2. 3. 2. 1 Schema composition

Composition rules for group relation schemas include

limitation on the number of parent group schernas and
dependent group schemas

requirement that the parent group sheemas(s) be
distinct from dependent group schemas(s).

GIS, MARK IV, IMS

A group relation schema consists of a single parent group schema
and a single dependent group schema. The parent and dependent
group schemas must be distinct.

UL/ 1

A group relation schema consists of a single "repeating group"
schema as parent and a single "repeating group" schema as depend-
ent. The parent and dependent group schemas must be distinct.

D13TG

A group relation schema consists of a single parent group schema
and one or more dependent group schemas. The parent and depend-
ent group schemas must be of the type "record" and must be distinct.

A parent group is called an "owner record" and a dependent group is
called a "member record."

A special group relation schema is provided which has no parent
group schema. Its parent is, in effect, the system.

IDS

A "chain" schema has the same rules of composition as in DBTG. A
parent group is called a "master record" and a dependent record is
called a "detail record".

A "CALL chain" schema is a "chain" schema with no parent group
schema. Its parent is, in effect, the file schema.

NIPS/FFS, TDMS, COBOL, SC-1

Not applicable.

117

115

www.manaraa.com

2-50

2. 3. 2. 2 Instance composition

This includes the rules for composing group relations from groups,
together with any restrictions on this process such as the require-
ment that a group have no more than one parent.

GIS, MARK IV, UL/1, IMS

An instance of a group relation schema consists of one instance of
the parent group schema and zero or more instances of the depend-
ent group schema, with each dependent group paired with the parent
group. The group relation is thus hierarchic.

DBTG, IDS

An instance of a group relation schema consists of one instance of
the parent group schema and zero or more instances of the depend-
ent group schema, with each dependent group optionally paired with
the parent group. The relation is thus non-hierarchic.

NIPS/FFS, TDMS, COBOL, SC-1

Not applicable.

2. 3.3 Group relation attributes

2. 3. 3. 1 Names

This is the facility for assigning names or other identifiers to group
relations.

GIS, MARK IV, UL /1, IMS

No naming facility is provided.

DBTG, IDS

Group relations must be assigns d names of 1 to 30 characters,
unique within the file. In IDS, group relations of the type "CALC
chain" have the name "CALC".

NIPS/FFS, TDMS, COBOL, SC-1

Not applicable.

118

116

www.manaraa.com

2 -51

2. 3. 3.2 Other schema attributes

Other schema attributes for a group relation include

item sets which serve in a special capacity, such
as dependent group identifier.

access locks for controlling access to parent or
dependent groups

placement criteria for new assembly members,
e.g., first, last, or in order by sequencer
item values.

GIS, MARK IV, UL-1, IMS

None.

DBTG, IDS

A group relation schema may have an ordering attribute, which
determines the ordering of dependent groups in instances of the re-
latioA. Ordering may be based on order of group insertion, or on
any combination of dependent group item values, dependent group
name, or dependent group sequencer.

A group relation schema may also have a separate identifier attri-
bute, consisting of a set of items whose values uniquely identify
dependent groups in instances of the relation. In IDS, this facility
is limited to the "CALC chain" relation.

In DBTG, each dependent group schema in a relation schema may
have an "automatic/manual" attribute. An automatic group is auto-
matically included in a dependent assembly whenever the group is
STORED. A manual group will be so included only through the
INSERT verb. A relation may additionally have a "mandatory/
optional" attribute. A mandatory group can be deleted only by the
DELETE verb. An optional group can be deleted either by a DELETE
SELECTIVE or REMOVE verb. IDS has no comparable facility.

The parent group schema in a relation schema may have an identifier
attribute, consisting of a set of item names whose values are used
to identify instances of the relation.

In DBTG, a relation schema may have access locks separate from
the locks on the constituent groups. No such facility is provided in
IDS.

119

117

www.manaraa.com

2-52

Note that each of the foregoing attributes is associated with the
relation, rather than with the group. This enables a given group
which is the dependent group in two or more relations to have differ-
ent sets of attributes in each relation.

NIPS/FFS, TDMS, COBOL, SC-1

Not applicable.

2. 3. 3. 3 Non-schema attributes

An example of a non-schema attribute for group relations is the
count of the members in an assembly.

No non-schema attributes are associated with group relations in
the systems surveyed.

2.4 Entries

An entry is a set of groups and group relations in which one and only
one group, the entry-defining group, is not contained in or subordinate
to any other group. The entry corresponds roughly to "record", a
term which is not ur.ed here because of possible confusion with the
storage structure of the same name.

The entry is used to represent the major entities of an application.
For a given class of entities (e. g. , the employees of a firm), the
items or principal items in the entry-defining group typically corres-
pond to fixed entity attributes, i. e. , attributes common to all
entities in the given class; while the items in the contained or sub-
ordinate group correspond to the variable entity attributes, i.e. ,

attributes not necessarily shared by all entities in the class or which
may have multiple values.

The entry-defining group of an entry may not be the dependent group
in a hierarchic group relation. It may, however, be the dependent
group in any non - hierarchic group relation for purposes of relating
entries in the same or different files. Facilities for accomplishing
inter-entry relations are covered in the sequel (see 2.5 and 2. 6).

Three major types of entry can be defined: the group entry, the tree
entry, and the plex entry.

A group entry consists of a single con-2pound group. The hierarchic
relating of items is achieved through group nesting, as described in
Section 2. 2.

120

118

www.manaraa.com

2-53

A group entry schema coincides with the schema of the entry-defining
group. An instance of a group entry schema is just an instance of
the entry-defining group schema.

Figure 2-24 illustrates a group entry schema.

A tree entry is a set of hierarchic group relations arranged as a
tree, i.e., arranged such that each group has at most one parent,
and one and only one group has no parent. The gr -)up without a
parent is the entry-defining group. It is also referred to as the
root group.

In a tree entry, the hierarchic relating of items is achieved primarily
through group relations, as described previously (see 2. 3). The
tree entry may contain compound groups, but the principal groups in
any such compound groups are typically restricted to being non-
repeating.

As a special case, the tree entry may consist of a single group
having no dependent groups. For this case, the tree entry is identi-
cal to the group entry.

A tree entry schema consists of a single group schema, or of one
or more hierarchic group relation schemas arranged as a tree. An
instance of a tree entry schema is a tree consisting of one instance
of the entry-defining group schema, and zero or more instances of
each dependent group schema for each instance of its parent.

Figure 2-25 illustrates a tree entry schema containing the same
data as the group entry schema of Figure 2-24. The group relations
in a tree entry are typically unnamed, since only a single kind of
relation between groups is being represented, namely, the hier-
archic relation.

A plex entry is a set of group relations in which every group except
one, the entry-defining group, the dependent in a hierarchic group
relation. Additionally, all groups in a plex entry may participate in
any number of non-hierarchic group relations.

The plex entry is a generalization of a tree entry, which results from
allowing non-hierarchic relations to be established between any pair
of groups. As in the tree entry, the groups in a plex entry tend to
be simple groups, but are not necessarily so. The plex entry in-
cludes the special case of a single root group.

121

119

www.manaraa.com

PERSON

NAME
L

NUMBER SALARY

2-54

SKILL

CODE TITLE

Figure 2-24
A group entry schema

120

122

1

CHILD

NAME] AGE

TYPE

PET

NAME

www.manaraa.com

2-55

PERSON = NAME, NUMBER, SA LARYS

SKILL= fCODE, TITLE CHILD 4NAME, AGES

PET 4TYPE, NAMES

Figure 2-25
A tree entry schema

,121
123

www.manaraa.com

2-56

A plex entry schema consists of a single group schema, or of one
or more group relation schemas in which one and only one group
relation schemas in which one and only one group schema, the
entry-defining group schema, is not the dependent in a hierarchic
group relation schema. An instance of a plex entry schema con-
sists of one instance of the single entry-defining group schema, or
of zero or more instances of each constituent group relation schema
subject to the restriction that there be only one instance of the entry-
defining group schema.

Figure 2-26 illustrates a plex entry schema obtained from the tree
entry schema of Figure 2-25 by adding the non-hierarchic relation
FEEDS between the groups PERSON and PET. Figure 2-27 illus-
trates an instance of this schema.

In addition to restrictions on the formation of group relation schemas,
a system rrk..y place restrictions on the manner of incorporating such
schemas into a plex entry schema. For example, in addition to pro-
hibiting "loops" (i. e., relations in which one group schema serves
as both parent mad dependent, a system may prohibit "cycles",
i.e., paths that close on themseleves as in

A

or
\It}

Similarly, the system may place additional restrictions on the forma-
tion of plex entry instances. For example, the system may prohibit
a group from having multiple parents by the same relation. Thus,
if R and S are different relations,

Not Allowed Allowed

A A

B/ \B BIZ B

R\Ic RIBS

In any of the foregoing types of entry, the entry-defining group
schema is generally considered to be a repeating group schema, in
the sense that it can have multiple instances for each instance of
the containing structure (the file). The set of instances of an entry

122
124

www.manaraa.com

2-57

PERSON = {NAME, NUMBER, SA LARY?

SKILL = /CODE, TITLE ICHILD = iNAME,AGII

PET = /TYPE, NAME

Figure 2-26
A plex entry schema

123_
125

FEEDS

www.manaraa.com

2-58

PERSON
(R. J. WALTERS

SKILL
1110

SKILL
(1120)

CHILD
TOMMY)

CHILD
(JANE)

PET
ULYSSES)

PE T
(ISIS)

Figure 2-27
An inc.tance of the plex entry schema

of Figure 2-26

124

126

www.manaraa.com

2-59

schema in a file are referred to as an assembly, and one or more
items in the entry-defining group may be used to identify or order
the members of the assembly.

All systems specifically provide the entry structure type. The
systems' terms for entry are shown in Figure 2-28.

2.4.1 Entry types

Two entries are of. different type if they have different rules of
composition or are used differently in composing other structures.
Entry type aoes not correspond to "record type". The latter term
is often used to denote an entry schema.

All systems surveyed provide a single type of entry only, as indicated
in Figure 2-28. In a NIPS/FFS entry, the "fixed set" can be inter-
preted either as the entry-defining group in a tree entry or as a set
of principal items in a group entry. The latter interpretation has
been arbitrarily chosen.

2.4.2 Entry composition

2.4.2.1 Schema composition

Composition rules for entry schemas include

limitation on number and type of group and group
relation schemas comprising the entry schema

limitation on the number of levels in the entry

GIS

An entry schema is a set of group relation schemas structured as a
tree. Multiple group schemas may appear on a single level only at
the lowest level of the tree.

The number of levels is limited to 16. The number of group schemas
is limited to 255.

MARK IV

An entry schema is a set of group relation schemas structured as a
tree.

The number of levels is limited to 9. The number of group schemas
is limited to 99.

125
127

www.manaraa.com

2-60

SYSTEM TERM ENTRY TYPE

GIS record tree

MARK IV record tree

NIPS/FFS record group

TDMS entry group

UL/ 1 record special (see text)

COBOL record group

DBTG record group

IDS record group

IMS (DA) record plex

IMS (A P) record tree

SC-1 record group

Figure 2-28
System's term for entry

126
128

www.manaraa.com

2-61
NIPS/FFS

An entry schema consists of one "fixed set" schema, and zero to
255 "periodic set" and "variable set" sch,..na.s.

TDMS

An entry schema has the same composition as a group schema.

The number of levels is limited to 16. The number of group schemas
in an entry schema must not exceed 255.

ULM.

An entry schema consists of zero or more item schemas and zero
to 1.5 sets of group relation schemas, each structured as a tree.

In each tree, the number of levels is limited to 15. The number of
group schemas in all trees must not exceed 255.

COBOL

An entry schema has the same composition as a group schema.

The number of levels is limited to 49.

DBTG, IDS

An entry schema has the same composition as a "record" schema
(see 2.2.2. 1).

IMS(DA1

An entry schema is a set of group relation schemas with the following
conditions:

1) Every group schema except one must be the dependent
in exactly one "physical" group relation schema. The
exception is the entry root; it has no parent.

2) Every group schema except the root may also be the
dependent in exactly one "logical" group relation schema.

The number of levels is limited to 15. The number of group schemas
and the number of "logical" group relation schemas are each limited
to 255.

As a special case, an entry schema may consist of a single root
group schema.

129

www.manaraa.com

2-62

IMS(AP)

An entry schema is a set of group relation schemas meeting the
following conditions:

1) Every group schema except one must be the dependent
in exactly one group relation schema. The exception is
the root; it has no parent.

2) The source of the root group schema must be a root
group schema in the "physical" entry.

3) If group schema Y is a dependent of group schema X,
then the primary source of Y must be a dependent of
the primary or secondary source of X.

The number of levels is limited to 15. The number of group schemas
cannot exceed 255.

As a speci.al case, an entry schema may consist of a single root
group schema.

SC-1 (DA)

An entry schema has the same composition as a group schema.

The number of levels cannot exceed 64. The number of principal
item schernas and principal group schemas together cannot exceed
255.

SC-1 (AP)

An entry sch:rna has the same composition as a group schema. An
entry schema may correspond to any "subtree" of the DA entry
schema which has a repeating group schema for its root.

2.4.2.2 Instance composition

Composition rules for entry instances include

limitation on number of group or group relation
instances

limitation on size of assemblies and number of
relations in which a dependent group may
participate.

130

128

www.manaraa.com

GIS, MARK IV 2-63

An instance of an entry schema consists of one or more instances
of each constituent group relation schema, subject to the following
restrictions:

1) There is only one instance of the root group schema.
2) Every group except the root must be the dependent in

exactly one instance of a group relation schema.

NIPS/FFS

An instance of an entry schema consists of one instance of the "fixed
set" schema, zero or more instances of each "periodic set", and
zero or one instance of each "variable set" schema.

TDMS, COBOL, DBTG, IDS, SC-1

An instance of an entry schema consists of one instance of the entry-
defining group schema.

UL/ 1

An instance of do entry schema consists of one instance of each
principal item schema, and zero or more instances of each tree of
group relation schemas.

IMS(DA)

An instance of an entry schema consists of one or more instances of
each constituent group relation schema, subject to the following
restrictions:

1) There is only one instance of the root group schema.
2) Every group except the root must be the dependent in

exactly one instance of a group relation schema.
3) Every group whose schema is the dependent in a "logical"

group relation schema must be paired with a single instance
of the logical parent schema.

IMS(AP)

An instance of an entry schema consists of one or more instances of
each constituent group relation schema, subject to the following
restriction:

1) There is only one instance of the root group schema.
2) Every group except the root must be the root must be the

dependent in exactly one instance of a group relation schema.
3) If group Y is a dependent of group X, then the primary source

of Y must be a dependent of the primary or secondary source
of X. 129

131

www.manaraa.com

2-64

2.4.3 Entry attributes

2.4.3.1 Names

Names may be assigned to entries so that instances of two or more
entry schemas can be distinguished when they oc sr together in
the same file. Entry name corresponds roughly to "record type
code".

GIS, MARK IV, NIPS/FFS, TDMS, UL/1, IMS

No facility is provIded for associating a name wi.:h an entry schema.

COBOL

An entry schema must be assigned a name of 1 to 30 characters,
unique in the file.

DBTG, IDS

The name of the entry-defining group is the entry name.

SC-1

An entry schema must be assigned a name of 2 to 31 characters.

2.4.3.2 Other schema attributes

Other schema attributes for an entry include

item sets in the entry-defining group which serve
in a special capacity, such as entry identifier

access locks for controlling access to entry schema
instances

codes which identify the programs making use of
the entry.

GIS, MARK IV, IMS, SC- I

In these systems, any identifier or sequencer attributes of the
entry-defining group are taken as the identifier or sequencer attri-
butes of the entry (see 2.2. 3.2).

130'
132

www.manaraa.com

2-65

NIPS / FFS

An identifier/sequencer comprised of one or more principal items
in the "fixed set" is required. The items must be of type "alpha-
meric" and their combined length must not exceed 244: characters.

TDMS

No other entry schema attributes are provided.

UL/ 1

An identifier/sequencer of 1 to 4 single-valued principal items in
the entry schema is required .

COBOL

No other entry schema attributes are provided.

DBTG, IDS

Entry schema attributes include those defined earlier for "records"
(see 2.2.3.2).

2. 4. 3. 3 Non-schema attributes

Included in non-schema entry attributes are

date and time entry was placed in the file
count of references to the entry.

GIS, MARK IV, NIPS/FFS, TDMS, COBOL, IMS

None.

UL/1

A date stamp is provided for entry instances.

DBTG, IDS, SC-1

The system identifier of the entry-defining group may be used as an
entry instance identifier.

131
133

www.manaraa.com

2-66

Z.5 Files

A file is a set of entries. A file thus corresponds to a set of appli-
cation entities, such as people, parts, projects, or organizations.
The entities of a file may be from the same class (e.g., people) or
from different classes (e.g., projects and organizations).

The entries of a file tend to be independent of one another, in the
sense that one entry can be processed without reference to another.
In the general case, however, entries of a file may be explicitly
inter-related, that is, related in a manner which is known to or
controlled by the system. A simple form of explicity relation is
the ordering of the file entries on, say, the values of the entry se-
quencer. More general relations are possible by establishing non-
hierarchic group relations between groups in different entries, or
between the entries themselves when they are group entries.

A file whose entries are unrelated, or related only by ordering, is
called an unlinked file. A file in which more general explicit re-
lations exist among entries is called a linked file.

An unlinked file schema consists of one or more entry schemas.
The usual case is that of a single entry schema. The generalization
to multiple entry schemas is made for reasons similar to those for
providing multiple dependent group schemas in a single group re-
lation schema (see Figure 2-19). An instance of an unlinked file
schema consists of zero or more instances of each entry schema,
with the instances possibly being ordered on the basis of a sequencer
which is common to the entry schemas.

A linked file schema similarly consists of one or more entry schemas.
In this case, however, each entry schema may contain one or more
entry schemas. In this case, however, each entry schema may contain
one or more inter-entry group relation schemas, i.e., non-hierarchic
group relation schemas where purpose is to establish relations among
instances of the entry schema. In addition, any two group schemas
from different entry schemas may be members of an inter-entry
group relation schema.

An instance of a linked file schema consists of zero or more instances
of each entry schema, with groups in different entry instances being
related in accordance with any inter-entry group relation schemas. In
addition, the entries of a file may be ordered as in the case of the un-
linked file.

132
134

www.manaraa.com

2-67

Figure 2-29 illustrates a linked file schema composed of a single
entry schema. The entry schema is that of Figure 2-26, augmented
with the inter-entry group relation schema WIFE, whose purpose
is to relate pairs of entries corresponding to married couples.
Figure 2-30 shows an instance of this schema.

Figure 2-31 illustrates the more complex case of a linked file
schema with multiple entry schemas. The file schema is composed
of four entry schenis (ORGANIZATION UNIT, PERSON, PROJECT
SKILL) interconnected by six inter-entry group relations (EMPLOYS,
HAS, WORKS ON, IS LEADER OF, REPORTS TO, IS RESPONSIBLE
FOR). The entries in this example are group entries, although in
the more general case they could be tree entries or plex entries.
Figure 2-32 shows an instance of the file schema of Figure 2-31,

All sys'ems surveyed provide the file as a data base structure. The
system term for file is often qualified with a term such as "system"
or "master ", to distinguish the data base file from such non-data base
files as transaction files and answer files (see Figure 2-33).

2,5.1 File types

Two files are of different type if they have different rules of compo -.
sition or different sets of attributes.

Each of the surveyed systems provide only a single type of data base
file.

2.5.2 File composition

2.5.2.1 Schema composition

Rules for file schema composition include

restriction on number and type of entry schemas in the
file schema

restrictions on the use of inter-entry relation schemas,
e.g., relations allowed between entry-defining groups
only.

GIS, MARK IV, NIPS/FFS TDMS, UL/1, IMS(AP) SC-1

A file schema is composed of a single entry schema.

135

www.manaraa.com

2 -68

PERSON

WIFE
(inter--entry)

FEEDS

Figure 2 -29
A file schema with a single entry schema

134
136

www.manaraa.com

PERSON
(N. M.

PETERSON)

2 -69

PERSON
WIFE R.

PETERSON)

SKILL
(0110)

SKILL
(6130)

SKILL
(6625)

SKILL
(6040)

CHILD
(ANN)

V
SKILL
{5210)

PET PET
(SAM) (BIRDIE)

Figure 2-30
An instance of the file schema

of Figure 2-29

135
137

SKILL
(5520)

FEEDS

www.manaraa.com

EMPLO

PERSON

HAS

SKILL

70

ORGANIZATION
UNIT

WORKS ONE

IS LEADS
OF

REPORTS TO

IS RESPONSIBLE FOR

PROJECT

Figure 2-31
A file schema with

multiple (group) entry schemas

136.
138

www.manaraa.com

2 - 7 1

ORGANIZATION
UNIT
(R/D)

REPO S TO

ORGANIZATION
UNIT

(RESEARCH)

SKILL

(GUSH- MAKER)

REP TS TO

ORGANIZATION
UNIT

(DEVELOPMENT)

SKILL

EM LOYS (WELDER)

HAS

HAS

p

PERSON

(J. DEAUX)

EM LOYS

WORKS N IS LEADER OF W

PROJECT

(WIDGETS)

Figure 2-32
An instance of the file schema

of Figure 2-31

137
139

IS
RESPONSIBLE
FOR

PROJECT

(TRANSISTORIZED
ABM)

www.manaraa.com

2-72

SYSTEM TERM

GIS system file

MARK IV master file

NIPS/ FFS data file

TDMS file, data base

UL/ 1 master file

COBOL file

DBTG data base

IDS fi_e

IMS(DA) physical data base

IMS(AP) logical data base

SC-1 primary file

Figuve 2-33
System's term for file

138
1140

www.manaraa.com

2 -73

COBOL

A file schema is composed of one or more entry schemas.

DBTG. IDS

A file schema is composed of one or more group relation schemas.
In IDS, the graph of the resulting structure must not contain cycles,
while in DBTG there is no such restriction. Since in these systems
the objects of group relations are "records", and "records" are
the equivalent of entries, a file schema can be described alternatively
as a set of entry schemas and a set of inter-entry group relation
schemas.

In IDS, a file schema may contain at most 999 "record" schemas.
"Record" schemas with no parent must have "access mode" equal
to "primary" or "calculated".

A file schema may contain at most one group relation schema whose
owner is the system (in IDS, the CALC chain).

IMS(DA)

A file schema. is composed of a single entry schema. "Logical"
group relations in the entry schema may be used for inter-entry re-
lations.

SC-1 (AP)

A file schema is composed of a single entry schema. The entry-de-
fining group schema may correspond to any repeating group schema
within a DA entry schema, and the entry schema may consist of any
subset of the structures subtended by this repeating group.

2. 5. 2. 2 Instance composition

Composition rules for file instances include

limitation on number of entry instances
limitation on inter-entry relations of the type covered

under group relation instances and plex entry instances.

GIS, MARK IV, NIPS/FFS, TDMS, UL/1, COBOL, IMS, SC-1

These systems employ the general rules of file instance composi-
tion cited in 2. 5.

139

www.manaraa.com

2 -74

DBTG, IDS

An instance of a file schema consists of (me or more instances of
each group relation schema contained therein, subject to the restric-
tion that a single group cannot be dependent on more than one parent
group in the same relation.

In DBTG, the provision for file schemas with cycles implies the
possibility of file instances with cycles. Such cycles can exist, only
when at least one "record" in the cycle has the "manual" attribute
(see 2. 3. 3.2).

2. 5. 3 File attributes

2. 5. 3. 1 Names

This includes facilities for assigning names or other identifiers to
files.

All systems require a file name, as indicated in Figure 2-34.

2. 5. 3. 2 Other schema attributes

Other schema attributes of files include

access locks for controlling access to the file
codes identifying the programs which make use of the file.

GIS

GIS provides access locks for query and update at the file level.

MARK IV

None.

NIPS / FFS

User may assign a security classification to a file.

TDMS, UL/1, IDS, IMS

None.

140
142

www.manaraa.com

2-75

NAME CLASS SYNONYMS

GIS 1 to 8 characters yes

MARK IV 1 to 8 characters no

NIPS/FFS 1 to 7 characters no

TDMS 1 to 255 characters no

UL/ 1 1 to 8 characters no

COBOL 1 to 30 characters no

DBTG 1 to 30 characters no

IDS 1 to 30 characters no

IMS 1 to 8 characters no

SC-1 2 to 31 characters no

Figure 2-34
File naming

141.

143

www.manaraa.com

2-76

COBOL

A label record type and label contents may be associated with a file
schema. Labels may be read, checked, anc: written with user-written
procedures.

DBTG

DBTG provides access locks at the file level.

SC-1

None.

2. 5. 3. 3 Non-schema attributes

Whenever multiple instances of a given file schema can exist at the
same time, provision is usually made for assigning identifiers to
the file instances. An example is a "generation number" used to
designate one of a set of files with the same name.

Other non-schema attributes of a file might include

date-time stamps
entry counts
control totals over file entries.

GIS

A "generation number" may be assigned to successive versions of
a physical sequential (a storage structure type) system file.

MARK IV, NIPS/FFS, UL/1, COBOL, DBTG, IDS, IMS

None.

TDMS

When the file is created, the date and a "modification number" of 1
are associated wits the instance. Each time the file is updated,
the date is revised ind the modification number is increased.

142
14

www.manaraa.com

2-77

SC-1

A "generation date" of the form YY-MM-DD may be associated with
versions of a primary file schema.

2. 6 Data base

A data base is a set of files maintained by the system for use in user-
specified creation, updating, and interrogation processes. The files
of a data base are accessed through names or other identifiers
supplied by the user in a prior definition process. Thus, files
which are defined to the system each time they are accessed would
not comprise a data base as defined here.

In the general case, the files of a data base may be inter-related.
This is usually accomplished by setting up relations among the
entries of different files, much in the manner that relations are
established among entries of the same file (see 2. 5).

A data base schema consists of one or more file schemas and possibly
one or more inter-file group relation schemas whose purpose is to
establish relations among entries of different files. An instance of a
data base schema consists of zero or more instances of each file
schema, with groups in different file instances being related in
accordance with any inter-file group relation schemas.

All systems surveyed have the data base structure type as defined
here.

2. 6. 1 Data base composition

A system's rules for composing a data base schema include

limitations on number of file schemas accommodated
limitations on the use of inter-file group relation

schemas.

Rules for composing a data base instance include

limitation on number of instances of each file schema
limitations on inter-file group relations of the type covered

under group relation instances and plex entry instances.

14a:
145

www.manaraa.com

2-78

In TDMS, DBTG, and IDS, a data base schema is composed of a
single file schema, and an instance of a data base schema consists
of one instance of the file schema.

In all other systems, a data base s :ema may contain multiple file
schemas. Except for GIS and SC-1, an instance of the data base
schema. consists of a single instance of each constituent file schema.
In GIS and SC-1, a file schema may have multiple instances.

In IMS(DA), a data base schema consists of one or more file schemas
and one or more "logical" group relation schemas representing inter-
file relations. An instance of a data base schema consists of one
instance of each constituent file schema, with files inter-related
according to any inter-file relations.

2. 7 Data structure generalization

Features may be provided by a system for accomodating data
structures more general than those implied by the foregoing para-
graphs. Examples are the establishing of explicit relationships
between items of different groups (as distinct from explicit relation-
ships between the groups as a whole); and the establishing of explicit
relationships between entire entries and files (as distinct from rela-
tionships between their constituent groups).

GIS, MARK IV, NIPS/FFS, TDMS, COBOL, IMS, SC-1

None.

UL/ 1

UL/1 interrogation procedures may be it yoked against COBOL files.
To this extent, the UL/1 data structure class subsumes the COBOL
data structure class.

DBTG

An additional data structure type, the "area", is superimposed on
those described earlier. The "area" is a collection of "records"
of various schemas. The main purpose of the "area" is to allow the
data administrator to control placement of data for efficient storage
and retrieval. However, the "area" is apparent to the application
programmer, hence is properly regarded as data structure.

144
146

www.manaraa.com

2-79

IDS

IDS provides programmer access to storage structure information
stored with each record instance, thus permitting the programmer
to achieve structures not within the scope of the system.

An additional data structure type, the "page", is provided in addition
to those described earlier. A "page" is a subdivision of data b-lse
storage. A range of "pages" serves the same purpose as the DBTG
"area".

145
147

www.manaraa.com

3. DATA DEFINITION

Two fundamental objectives of generalized data base management
systems are to store all user data in a data base, and to achieve
independence of the data from the programs that process it. In

this way data can change without necessarily causing a change in
all the programs operating on it (and vice versa). Also, the
centrally stored data can be used by various groups of users and
still be separately managed, standardized, and protected. In order
to achieve this, a unified facility is provided for the definition
of the structure of the data to be stored and processed. To utilize
this facility the data administrator describes the names, value
classes, constituents, relationships, and all other attributes of
the various data structures he wishes to establish (see Chapter 2).

Some systems allow both an overall primary data definition, and
individual ones oriented toward particular users or programs,
within the framework of the primary one. It also may he
possible for the user to redefine his structure to a greater or
less extent without completely restating the definition and
restructuring the stored data.

3.1 Context of the data definition

Systems vary in the way in which data definition fits into their
overall framework. In a few, the definition is an integral part
of each program, concerned only with the data for that program,
and complied with it. In most, however, the definition is input
to the system separately, and processed to create directories or
tables which are referenced in later processing steps. The
definition function may be integrated with file creation (see
Chapter 6), or the definition of the file and its population may
be independent steps.

There are various ways of organizing the internal structure of the
definition. It may be a single integrated set of statements or it
may be broken into several subsections. The concept of level in a
hierarchical data structure may or may not be explicitly used in
the definition and the definition of elements at one level may
appear before or after the definition at the next higher level.
In some systems, each line of the definition contains its own
identification and therefore the lines can be input in any order.
In others the sequence of presentation is significant.

146
110

www.manaraa.com

3-2

Finally, in different systems, data definition is done in different
sorts of languages narrative, keyword, separator, or fixed posi-
tion. These types are described in the General Summary (see 1.4).
Generally all data definition for a given system is done in a
single language, with the details of syntax varying depending on
the particular type of structure being defined. The language is
often of the same form as, or closely related to, those used for
interrogation, updating, and other functions.

At the ead of this chapter (see 3.11), a single data structure is
defined in the language of each system.

GIS

The process of data definition is combined in a separate data de-
scription task (DDT) with control of the storage allocation
function of the operating system. This task is executed directly
by the system's language professor, and produces tables for later
reference by a compiler.

The data definition is a single free-standing sat of statements
in a keyword-type language. Its subsets each describe one group
of a tree-structured entry, with the definition of the attributes
of a group schema following the definitions of its constituent
item schemes.

MARK IV

The data definition process is combined with linkage to storage
allocation, and results in a set of compiled instructions
It can be done in conjunction with, or at any time prior to, file
creation.

The definition is done using a printed File Definition form with
fixed field positions (see Figure 3-1). File level information is
entered in the heading; the form contains one or more lines for
each item schema, which also incorporate group level information.
Each line is internally identified, and their order of input
is immaterial.

NIPS/FFS

Data definition takes the form of a separate file definition batch
run. In the exe=tion of this run, the file is established and
its definition converted tOa Tile Format Table (FFT) that is
stored at the beginning of the file.

1.47

150

www.manaraa.com

3-3

The data definition, in separator form, includes for each non-repeating
group schema, the definition of its constituent item schemas, followed
by the group selema definition. Repeating group schema structure is
implied by codes in the item level definitions.

TDMS

Data definition is a separate function performed using the DEFINE
operator. The inputs to DEFINE are narrative statements, with each
statement containing an item or group schema. Statements may be
entered interactively at a terminal, or handled as batch input.

The result of the DEFINE operation is a skelei:on file containing all
of the necessary directories, but none of the data tables which are
constructed by GENERATE (see Chapter 6).

UL/1

The process of data definition is carried out by an Establishment
task, which processes two parts of the data definition; Identifica-
tion, which defines the item schemas only, and Structure, which sets
out the group level structure. Both of these are in separator form,
with the Structure section using some narrative-type elements. Other
sections of the definition contain information on coded item values
and on validation to be performed on item values.

If COBOL files are to be processed, the COBOL Data Division must be
input (see 6.2).

COBOL

The data definition, in narrative form, is an integral part, called
the Data Division, of each program processing the data, is concerned
only uith data for that program, and is compiled along with the pro-
cedure statements. There is no concept of data definition as a
separate set of statements or independent process.

Group schema hierarchical relationships are defined by explicit level
numbers, and a group schema definition precedes its item definitions.

DBTG

The system distinguishes two major data definition components:

The schema, in which the overall data base is defined from
the viewpoint of the data administrator, expressed in a
Data Description Language (DDL) for the Schema.

-48-
151

www.manaraa.com

3-4

The sub-schema which describes the data as seen by an
individual user or program, and which can be in one of a
variety of languages oriented toward particular host
languages. The sub-schema DDL for COBOL has been specified
by the Data Base Task Group.

In this chapter, cxcept when discussing auxiliary data definition
(see 3.10), all descriptions will be only of definition as done in
the Data Description Language for the Schema.

This language is narrative in form. Many of its features are devoted
to expressing various attributes of group relations, and the defini-
tion of these is separated from item and group schema definition.

The data definition is a separate set of statements intended to be
processed independently of any program using it.

IDS

The data definition is done within the Data Division framework of a
COBOL program, with statements to define group relations being added
in a narrative language. The whole program, containing the augmented
Data Division, is compiled as a body.

IMS

Data definition is specified in a separator-type language and is
carried out in a separate data definition job, together with linkage
to the storage allocation function of the operating system. The
definition is a single set of statements, with a sub-set defining
each group of the tree-type entry. The group schema definition pre-
cedes those of its constituent items.

SC-1

Data structure definition is accomplished using a self-contained
function which is independent of any user program and independent
of any operations which populate that data structure. It takes place
prior to processing, and the processed definition is stored.

The definition takes place incrementally, in that the definition
process always adds (or for revision, modifies or deletes) structures
to or from an existing hierarchical framework. On initial definition,
that framework is empty. Later on, changes can be made at any node
in the hierarchy. A repeating group schema and its instance are
defined separately, at adjacent levels, followed by the definitions
of its principal items and non-repeating groups, and then the
definitions of any principal repeating groups. The language form is
separator. A fixed position input sheet is also provided.

149
152

www.manaraa.com

3-5

3.2 Item schema definition

Item names, value class and other schema attributes are defined
using some form of the system's common language type (see 1.4).

The name of the item (and possible synonyms) are given. Some
systems also allow or require an item number, which can be used
instead of the name in the definition and elsewhere in the system.
This number appears essentially as a line number in the definition.

The value class of the item may be defined by giving name or code
of the item type ("BINA" for binary, "D" for date), or several of
the attributes for the item value class may be combined in a
"picture" statement, which contains a string of one-character codes,
each defining the characters which may occur in the corresponding
position of a value of that item. Editing directions may also be
included (which are not part of the item value class definition).
Thus "$$999V99" specifies the item value length (five decimal
digits) by the 9's, the position of the decimal point by the V,
and a floating dollar sign for editing by the $$.

Some systems allow the user to state a range of values which are
permitted; a minimum or maximum value; or to specify, by listing
them, the actual individual values which the item instance is
allowed to assume. Value class attributes may be specified either
at the same time as the item name and item type, or in a separate
section of the date definition. Therefore, they may be considered
as either an intrinsic part of the item schema definition or
as part of the validation which must be applied to the data values
(singly and collectively) in the data base. The user may also be
able to control the item's placement (right or left justified) in
an area longer than that necessary to contain it, and to set up
synonyms for values.

The length of the item value may be fixed in the system, and
therefore unnecessary to define, or if not fixed it may be given
in digits, bytes, or characters (or be implied by a "picture"
statement). The user may be required to state the starting
character position of the item value in the containing group or
entry, in addition to or instead of the length.

More or less extensive editing of item values, either for input/
output or for validation, may be definable. This may be part
of the "picture", or may be specified by giving the names of
subroutines or tables which are to be used.

150
153

www.manaraa.com

3-6

Security against unauthorized accesses to values is usually defined
by giving one or more codes (sometimes different for query and
update) which the user must supply before being allowed to use the
value. In some cases the user may specify the name of a security
checking procedure to be used in connection with item references.

In the case of string-type items, sub-items may be named, and
defined by giving the starting and ending positions, or the length,
of the sub-item within the item value.

Finally the role of the item as a group or entry identifier or
sequencer may be indicated.

GIS

Item schema attributes are defined by a sequence of "keyword =
identifier" clauses, separated by commas. These clauses are of
the following forms:

Item name FLD:NAME = name

Item Type PACD Packed Decimal
EBCD EBCDIC

UNITS = BINA Binary
FLPT. Floating Point

Length LENGTH=no.-of-bytes

An output column heading can be defined by a clause of the
form:

HEADER = text

Optionally, editing and additional validation information can be
given by a statement of the form:

E
EDIT:TYPSPC = edit-type, ERRORD =

CONVA = value-type, LGTHA = value-length, value-statement

according to the following:

151:

154

www.manaraa.com

3-7

Type of editing
and validation edit-type value-type value-statement

Pattern PICT (not used) EEDVAL = picture

Range RNGE limit value EEDVAL =
limit, upper-11m1::

Set of
values

LKUP table values EEDVAL = value-1
[value-2]...

(explicit
or in a
table)

EXTABL = exterual-
table-name

User- EXIT input value URUNT = routine-
supplied
routine

to routine name

The type of the element shown under value-type is specified in the
same way as for UNITS, and the length is given by "value-length".

ERRORD determines whether the erroneous value will (S) or will
not (E) be put in the file. In either case the user is warned.

Security is specified by:

QSEC = query-access-cod
USEC = update-access-code

where the access codes are arbitrary numbers in the range 0-127.
The table relating access codes to users' security codes is
set up by a system utility (see 8.2.2).

One or more synonyms for an item can be defined by statements
of the form:

SYNM:NAME = synonym

Input and output conversion of item values is specified by:

ENCD
:TYPESPC =

{LKUP}, edit parameters
DECD EXIT

where LKUP implies conversion through a table and EXIT implies
conversion through a user-supplied routine. Additional parameters
are as in EDIT.

152

155

www.manaraa.com

3-8

Output formatting is given by:

MASK edit-pattern

where edit pattern is the same as for the IBM System/360 Edit
instruction

Sub-items are specified by:

RDFN sub-item-name-1, length-1, [sub-item-name-2, length-2] ...

The sum of the lengths must be the same as the length of the parent
item. The subitem statement must follow the FLD statement for the
parent item.

MARK IV

An item schema definition is specified by filling in columns on the
File Definition Form (Figure 3-1) to specify item name ("Field name"),
starting byte position of item in the group ("Field location"), item
length in bytes, type, number of decimal places, editing instructions,
column heading, and use of the table lookup feature.

"L" in the form code identifies this line as coming from a file defini-
tion form. The digit following is zero, except for heading and table
definition lines, as explained below.

Item type is given according to the following codes

P packed decimal
Z zoned decimal
C EBCDIC*

F binary
E floating point

*MK
FILE DEFINITION informatics

1p.

FILE MANAGEM,ENT SYSTEAP 0
rl

I7 FILE NAME CC CHARACTERISTICS OF FILE PAGEOF L44
It

6 9 10 RECORD RECORDS
FILE 'DENT. DELETE? CLOCSARY FORMAT RECORD SIZE FER CLOCK SUFFER SIZE DECK

I - --1 0I ; S0 SO
11 1 19 74 77 76 74 24 7Y 77

PILE NAME

IL

?!. z
28
9 10 ll,.

FIELD NAME

,11i

ci

t, 3
6 t4

19 10.21

1

FIELD
.1 LOCATION

'"

22 77, .76

FIELD
LENGTH

77, 7970

,,.t M..- .
1.6.

4 6
,-. -. * I

31

0
4
-I,.1
p
a

17,33

cc

0
4.
0 0
-, 2
r6

17, Le

,A` 6
o N

34,50

6,
... ,..'
z

.... v-
u'' Z
N g
7 §
F 0

36, all

OUTPUT
EDIT COLUMN HEADING rim-

0 12

T..' 2 1

S :5 3
. ;: F.
9, .41

g
z
ti

47.43 44.

,

l
TABLE NAME 1

1

1

MKT
ARGUMENT NAME

.54

. . . '

. L . _._ . . " ' .
I

I. . a

Figure 3-45';

MARK IV File Definition Form

156

153

www.manaraa.com

3-9

Floating symbols are $ () t and trailing may be -, CR, or DR.
The filling character replaces leading zeroes.

The output column heading (which can have up to nine lines) is
specified in additional lines following the basic one. This is
indicated, and the lines are numbered, by digits 1 to 9 (instead
of 0) in the second column of "Form code".

Use of the table lookup feature is specified in two additional
lines. Both have the name of the decoded value (its name as used
in requests) as "Field name". The first has a "0" in "Form code"
and an "R" in Field type". The second has an "A" in "Form code ",
the name of the table in "Table name", and the item, name of the
input value in "Input argument name".

NIPS/FFS

Item schema definition is done by a statement of the form

FIELD item-name length code type

[input

subroutine-name] [output subroutine-name]
Linput table-name output table-name

[edit-mask-name] [output-label]

Item length is given in chrracters.

The item code is C for entry identifier, X for principal item,
and VX for variable length item.

Item type may be:

ALPHA* string
NUMER decimal numbers
COORD geographic coordinate

The input and output subroutines or tables can be used for
conversion or validation. They are not needed for COORD type
items which the system converts to a special internal format.
Subroutines may be written in BAL, COBOL, FORTRAN, OR PL/1.

The edit-mask may be used for output editing of numeric items.
A mask may contain any character except the single quote mark
that is used to enclose the mask. Except for ampersands, blanks,

154
157

www.manaraa.com

3-10

minus signs and CR's (credit balance symbols), the characters in
the mask will print as shown. Blanks are used where source item
digits are to appear; zeroes are placed where source item zeroes
are not to be suppressed. The minus sign and CR are placed to the
left of the first replaceable character. An alternative position
for the CR is to the right of the last character.

The output-label is used only with output written at a terminal.

TDMS

The format for an item schema definition is:

n item-name (type) rVALUES ARE value-set-list
[FORMAT IS picture

n is the user-chosen number given to the definition of each
schema (item or group).

The number may be used anywhere in the system instead of the name,
in the form Cm,for example, C4

Type may be NAME, NUMBER, or DATE.

Additional validation (beyond type) is controlled by the VALUES
or FORMAT statement. In the former case "100 . . .200" indicates
a range, and "100. . .$" a minimum but no maximum ("$. . .200"
is also valid)

A sub-item illay be defined by specifying the character positions of
the subitem in the parent item, instead of an item type. Either
left or right position specification may be used, for example

18 BIRTH (DATE IN 11) FORMAT IS 99</>99</>99
181 MONTH OF BIRTH (R1 ... 2 IN 18)
182 DAY OF BIRTH (L1 ... 2 IN 18)
183 YEAR OF BIRTH (L4 ... 5 IN 18)

UL/1

The item schema definition has the form:

#item-number type [item-name] column heading]

Item schemes may be referred to by number throughout the system,
hence the optional item name. The optional column heading is used
in output reports to identify item values.

155
158

www.manaraa.com

3-11

Allowable type designations are:

ALPHANUMERIC or A
CODED or C

DATE or D

NUMERIC or N

If the type is CODED, a code table must be given in the Codes
Section for each such item. It consists of a coded form and a
code text. The coded form must not be more than eight characters;
the code text may be up to 255 characters. Since codes are always
disk resident during a run, they may fill as much space as is
available.

The Code Section is followed by a validation criteria section
containing statements in the selection criteria format specifying
conditions on item lengths, for example,

463 LENGTH (GE 6 AND LE 10) OR EQ 3 OR 12

Each part of an item of type DATE may be addressed separately as
YEAR MONTH, DAY; there is no other sub-item facility.

Any schema can be defined so as to have an entry date (date stamp)
attached to each of its values. The set of these schemas is de-
fined by:

ENTRY DATE item-name-1 [item-name-2]...

A multiple-valued item schema is defined by:

item-name REPEATS

COBOL

The basic format of an item schema definition is:

level item-name; PICTURE IS picture;
[USAGE IS usagel

The level is used to define the relationship between a group
schema and its constituent item schemas (see 3.3).

The "picture" is a character string in which each character is-a
code for the kind of character allowed or the editing to be
performed at the corresponding position in an item value. Some
examples are:

A alphabetic
X alphanumeric
Z replace zero by space

159

156

9 numeric
V (inserted) decimal point
$ floating dollar sign

;

www.manaraa.com

3-12

The optional USAGE phrase specifies the data item type, as
follows:

COMPUTATIONAL Binary

COMPUTATIONAL-n Implementor option
DISPLAY* Unpacked (decimal if picture

character is 9; alphanumeric if
picture character is X)

DISPLAY-n Implementor option
INDEX Used as group identifier in an

assembly

The significance of the numeric suffixes with COMPUTATIONAL and
DISPLAY is an implementor option, which can be used to handle
such things as floating point or packed numeric values, or sign
type and placement.

A variable length item can be specified by:

PICTURE IS character-string DEPENDING ON length-value

where the length is specified in length-value.

Other optional elements are:

JUSTIFIED RIGHT

BLANK WHEN ZERO

This causes alphanumeric values to
be right justified, rather than
having normal left justification.

An item schema with this specification
and having a zero value will print as
spaces rather than zeros-

A multiple valued item may be defined by:

level item-name OCCURS number-1 TO number-2 TIMES
DEPENDING ON number-of-values-item

Two equivalent sets of values can be established for a given item
schema, one coded for saving storage, and one explicit for con-
venience in referencing. Thus the definitions:

04 SALCODE PICTURE 9

88 GRATIS VALUE IS 0
88 LOWSAL VALUES ARE 1,3
88 HIGHSAL VALUES ARE 5 THRU 9

157
16o

www.manaraa.com

3-13

allow the user to state a condition as

IF LOWSAL rather than IF SALCODE = 1 OR 3

This is called a "condition name". 88 is a special level
reserved for this purpose.

DBTG

The basic format of item schema definition is:

level item-name JPICTURE IS picture
TYPE IS type [integer-1[,integer-2]].

The level is used to define the data structure within a group
schema (see 3.3). The PCITURE feature is similar to that
described earlier in this chapter. The "type" specifies the
item as either BINARY or DECIMAL for FIXED, FLOATING, REAL and
COMPLEX numbers. In addition, BIT, CHARACTER, DATABASE-KEY
and implementor types are provided.

The values given to integer-1 and integer-2 are used to specify
such attributes as the precision and scale of numeric items,
and the length of string-type items.

A conversion procedure in lieu of the standard one can be
specified by

ENCODING t

FOR {DECODING I ALWAYS CALL procedure-name

Security is provided for by statements of the form

1

procedure-name-1
PRIVACY LOCK FOR facility IS literal-1

lock-name-1[VALUE IS literal-1]

procedure-name-2
OR literal-2

lock-name-2 [VALUE IS literal-2] &Op

"Facility" can be any one or more of STORE, GET, and MODIFY.
The result of the procedure name, the literal, or the contents of
the lock name (which can be given an initial value by VALUE) is
associated with the item, and must also appear in any program
which uses any of the listed facilities on an item value.

If an item schema is part of a group schema which in turn is the
parent of a dependent group schema in a group relation, then the
item schema definition may contain the statement:

158
161

www.manaraa.com

3-14

ACTUAL 1
IS RESULT OF procedure-name ON MEMBERS

VIRTUAL OF dependent-group-name

which will cause the appropriate item value to be updated
(if ACTUAL) whenever a change is made in a dependent assembly.
If the VIRTUAL option is used, space for the item value will
not be assigned in the entry. Instead the value is calculated
anew whenever a GET involving the item is performed (see 7.5.2.3).

If an item belongs to a dependent group schema, an inverse
facility is invoked by

1

IS SOURCE IS item-name
VIRTUALI

OF OWNER OF group-relation-name

which causes the value of this item to be copied, into the entry
as stored if ACTUAL, or looked up at GET time if VIRTUAL, from
the named item in the parent group instance.

Validity checking is specified by the statement

CHECK IS
PICTURE
RANGE OF value-1 THRU value-2
procedure-name USING error-check-item

[,item-name]

which with PICTURE causes the PICTURE given previously in the item
schema definition to be used fo. validation, as well as for the
original purpose of decimal point and editing specification.

If RANGE is specified a check is made against the range whenever
an item value is changed or added to the file. The checking
may also be done by the named procedure, which places a zerc
or non-zero value in error-check-item based on the validity
or non-validity of the value. The additional item names
define parameters to be passed to the procedure.

Inclusion of the alerting clause:

ON [facility-list] CALL procedure -name[USING item-name-1
[item -name -2]...]

159'
162

www.manaraa.com

3-15

in an item schema definition results in the specified procedure
being called whenever any of the listed facilities (chosen
from STORE, GET, and MODIFY) is executed on a value of that item.
If none are listed, the procedure will be invoked whenever the
item is accessed.

IDS

Item schema definition is essentially identical to COBOL.

IMS

The format for item schema definition is

FIELD NAME = (item-name,[SEQ [;M]),BYTES = length, TYPE = type,

START = position

JJ

SEQ indicates that this item schema is the group sequencer,
and U or M that values are unique, or may be multiple, respec-
tively.

TYPE is chosen from

C Alphanumeric
P Packed decimal
X Binary

The value of position is starting byte of item value within
group.

SC-1

The item schema is defined by a statement of the form:

level item-name type length-code LENGTH length [security]

The length of code is

F fixed

FO fixed optional; value may be missing

V variable (stated length is a maximum)

.16()

163

www.manaraa.com

3-16

The type may be Length specified in.

A alphanumeric (EBCDIC) characters

D decimal integer digits

E floating point (exponential) S (4-byte), L (8-byte)

I binary integer bytes

B bit string bits

G general bytes

Security may be defined by statements of the forms:

SRL security restriction level

UAC classa-1 [, classa-21 . .

UMC classm-1 [, classm-2j . . .

SRL establishes an authority level (0-15) for the item schema;
a user must have been given .(by the Data Administrator) an
authority level at least as high, in order to access or modify
the item.

The user may access (modify) the item only if some subject
matter class (0-255) on his UAC (UMC) list (also set up by
the Data Administrator) matches a class in the item schema's
UAC (UMC) list. This allows security restriction on a
"need-to-know" basis.

Both SRL and UAC/UMC checks must be satisfied before a
user can gain access to a data item.

161

164

www.manaraa.com

3-17

3.3 Group schema definition

The organization of the group schema definition depends on
whether the group is simple or compound. If the group is simple,
then each group schema definition is self-contained, usually
composed of (in either order):

A statement of the schema attributes of the group

The definitions of the item schemas constituting the
group schema.

The relationship between a group schema and its constituent item
schemas may be defined explicitly, by giving a reference to the
group schema in the definition of the item schema or vice versa.
Alternatively, the relation may be implied by the ordering of the
definitions, so that, for example, a group schema is defined to
consist of all the item schemas whose definitions immediately
follow (or precede) the statement which defines the attributes of
the group schema itself.

On the other hand, if the group is compound, its definition must
include the definitions of the contained groups. In some systems,
the item and group schema definitions are interwoven, while in other
systems, all of the item level information is presented sepa-
rately from the definitions of the group schemas.

Group schema definition may have either a top-down or a bottom-up
approach. In the top-down approach, the top levels of the
hierarchy are defined first, followed by the next level and so on.
In the bottom-up approach, the lowest level is defined first.

Often each element (group or item) in the hierarchy is assigned
a level number which indicates how far down in the hierarchy
it is. Thus in Figure 2-11, the group schema PERSON would be
assigned level 1; the item schemas such as NAME and NUMBER, and the
group schema SKILL, level 2; and TITLE, level 3. This allows the
system to reconstruct the hierarchy from a set of sequentially-
presented definitions.

The definition of a group schema which has one or more dependent
(contained or subordinate) group schemes may be required to contain
for each such dependent group an item schema whose value is the
number of members in the corresponding dependent assembly. This is
often called a count item.

Some of these characteristics of group schema definition are
summarized in Figure 3-2.

162,
165

www.manaraa.com

3-18

SEPARATE
DEFINITION
OF ITEM AND
GROUP
SCHEMA
ATTRIBUTES

SPECIAL

KEYWORD FOR GROUP

METHOD or RELATING
DEFINITIONS OF PRINCIPAL
ELEMENTS TO THEIR PARENT
CROUP SCHEMA

EXPLICIT
LEVEL NO.

COUNT
ITEM

NON-
RPTNG
GROUP

1

RPTNG
GROUP

NON-
REPEATING REPEATING

NON-
REPEATING REPEATING

GIS a. e. yes n.e. SEC(n.a. precede
group
definition

yea
(groups only

yes

MARK
IV

n.e. no none n.a. all contain
group scheme
no.

yes
(groups only)

yes

NIPS/
FFS

yes no GROUP none precede group
definition;
names listed
following
group name

all contain
group schema
no.

no no

TOMS n.a. yes n.e. RG or
REPEATING
GROUP

n.a. "IN group-
name"

no no

UL/1 yes yes none REPEATS names listed
group name .

following no no

rUIDER group-

name"

level nn.
defini-

COBOL

DBIG

IDS

yes none OCCURS

all have same
and follow group
tion

yes

(groups and

items)

yes

INS n.e. yes n.a. SEGM' n.a. follow group
definition

no no

SC-1 yes yes S F, R all have same level no.
and follow group defini-
Lion

yes
(groups and
items)

no

Figure 3-2
Group schema definition

www.manaraa.com

3-19

GIS

The definition of a group schema consists of the definitions of its
constituent items, followed by a group schema definition statement of
the form:

SEGM:NAME = group-name, LEVEL = level

[

,UNIND = {Y1
' D
SORT = sequencer-item-name-1, {1,1

N

[sequencer-
item name -2, {D d..

"Level" defines the level of the group in the entry schema: 00 for
the root group schema, 01 for its dependent schema, and so on. The

SORT clause specifies the group sequencer, which in turn, determines
the ordering of groups in an assembly. A or D specifies ascending
or descending. This phrase is optional only at the lowest level in
the hierarchy of group schemas. UNIND (uniqueness indicator) is Y if
the values of the sequencer item(s) uniquely identify the groups in
the assembly.

A non-repeating group can be defined only by considering the elements
to be sub-items (see 3.2).

The required count item is defined in the parent group in the same
way as any other item schema. The dependent group schema definition
must contain a statement of the form

OPTION = CNT, OPTFNM count-item-name

where "count-item-name" is the name of the count item in the parent
group schema.

A group or any portion thereof may be redefined by placing the
following set of statements after the DATM Statement of a root
segment or the SEGM Statement of a non-root segment.

ALTR [item-name]

item-definition-1

[item-definition-2] ...

ALTE

where each itemdefinition is in the form described earlier (see 3.2).
The effect of this statement is to redefine the string of bytes
comprising the group, starting either with the item named in the
ALTR statement, or with the beginning of the group, if no item-name
appears in the ALTR Statement.

167

164

www.manaraa.com

3-20

The new definition need bear no relation to the original, except that
the redefined group length must not exceed the original group length,
and any sequencer and count items in the redefined group must have
the same relative location, length, and data type as in the original.

A group may be redefined in the above manner any number of times by
repeating the ALTR...ALTE sequence as many times as required. The
last sequence is followed by the statement ALTR END.

MARK IV

Each item schema definition line on the file definition sheet
(Figure 3-1) contains columns as follows:

Column Function

Segment No. Number of group schema to which the
item schema belongs.

Level

Segment Key

This segment
occurs n times

Count field
for segment no.

Thus a group schema definition
with the same "Segment Number".

NIPS/FFS

Level of that group in the entry.

A digit from 1 to 9 which, identifies
the order of significance of the item
schemas which are group sequencers.

Number of occurrences per assembly,
if fixed.

Number of group schema for which this
item is a count item.

consists of all item schema definitions

A non-repeating group schema is defined by:

GROUP this-group-name
(item- name -1 item-name-2

COO
group-name-1 group- name-2I

[

input- subroutine -name 1 routput- subroutine -name

input-table-name output-table-name

[edit-mask-name] [output-label]

165
168

www.manaraa.com

3-21

In this statement the set of item and non-repeating group schemas
constituting the group are listed immediately following the group
name. Their definitions must have immediately preceded this one.
The optional specifications of group attributes are similar to
those for items, but these apply to the group as a whole as
distinct from its component elements.

Repeating groups are defined by the code attribute of the
constituent item schemas. The code for a repeating group is a
group number starting with 1 for the first group and continuing
with consecutive numbers for succeeding groups up to 255. The
definition of each item schema which is part of a group schema
contains as the value of "code", the number of the group schema.
Thus the definition of group schema "m" consists of the set of all
those item schema definitions which contain "m" in the "code"
field.

The variable length non-repeating groups that can be modified, and
printed or displayed are defined by a statement of the following
type:

VSET group-name width-of-terminal-output-line
[output-label]

Since the group has a name and does not repeat, it can be con-
sidered a variable length item. The system stores a VSET as a
group and supplies it with the next repeating group number.
This report also treats them as groups.

If a user wishes to designate an instance of a group (for example,
for updating) by supplying the value of a group identifier, he
may indicate that certain contiguous item schemas of a group
schema, starting with the first one, are group identifiers by
prefacing the group number with a C. If no identifier is assigned,
the system assigns each instance of the group schema in an
assembly (i.e. NIPS "subset") a sequential number as its identifier.

The last item of the group may be variable length. If so, its
group number is prefaced by a V.

TDMS

The user assigns numbers (out of a single series) and names
to item and group schemas. Either names or numbers can be

.16G

169

www.manaraa.com

3-22

used in referencing them. Group schemes are specified with a line
for the group schema definition, followed by definitions for its
contained item and group schemas (RG or REPEATING GROUP may be used):

n group - name -1 (RG)

n + 1 item- name -1 (type IN group-name-l)

n + 2 item-name-2 (type IN n)

n + 3 group-name-2 (RG IN n)

The indenting is only for clarity and is not required by the
system. The numbers need not be sequential and subordinate
items or groups can be defined at any time after their parent
is defined. A non-repeating group schema must be defined as a
repeating group schema which happens always to have one instance
per assembly.

UL/1

Group schemes are defined in a separate STRUCTURE section,
following the collection of item schema definitions which forms
the IDENTIFICATION section of the file definition.

A group schema is defined in the form

group-name (item-name-1 [item name- 2]....)

in which the names of its constituent items are listed:

A repeating group schema has the specification

group-name-1 (item-list) REPEATS [UNDER group-name-2]

The VALIDATION CRITERIA section may contain a statement of the
form

item-name REPEATS relational-operator integer

for example SKILL REPEATS LT 6

to set limits on the size of an assembly.

161
170

www.manaraa.com

3-23

COBOL

A group schema is defined by a statement of the form

level group-name [OCCURS integer1[TO integer-2]

TIMES [DEPENDING ON count]]

ASCENDING
II

KEY IS
RANDOM

item -name -1[item-name-2].]

[INDEXED BY index-name-1 [,index -name -2]...]

The statement is followed by one or more additional statements
defining the group constituents, i.e., items or groups. "Level"
defines the group's position in the hierarchy. Level numbers of
'constituents must be larger than that of the containing structure,
but need not be consecutive.

A repeating group schema is being defined if the definition
contains an OCCURS clause.

The number of groups in an assembly may be fixed or variable; in
the latter case the TO phrase is included, and the value of the
item "count" is the number. The sequencing and KEY statements
control the order of group; in an assembly. "Index-name" is an
item (which has no schema definition) whose value is used to
access an individual group within an assembly,

The statement

level group-name-1; REDEFINES group-name-2

allows two (or more) different, overlapping data structures to be
established at one point in the hierarchy and consequently one
area of storage to be organized and referenced according to these
several different structures.

Group-name-1 and group-name-2 are each defined as described
above.

This facility may not be used to define a file with multiple
entry schemes, that is it ..Ay not be used at level 01 (see 3.6).
It also may not be used in connection with groups with variable
size assemblies.

www.manaraa.com

3-24

An item or group synonym, or non-repeating group schema, can
be defined with a statement

66 schema-name-1 RENAMES schema-name-2

[THRU schema-name-3]

If the THRU option is used, the statement defines schema-name-1
as a non-repeating group containing all the elements which are
in the definition between schema-names-2 and -3. 66 is a special
level reserved for RENAMES.

A group schema definition may contain a USAGE clause (see 3.2),
which applies to all its constituents (none of which may be
defined to have a contradictory USAGE).

DBTG

DBTG distinguishes two types of group schemas:

The "record", which can be the object of an explicit
group relation, which corresponds to the entry (see 2.4),
and whose definition will be described under entry schema
definition (see 3.5).

The "data aggregate", which is a group at a level below
the record.

The "data aggregate" is defined by the statement

level group-name [OCCURS
'fixed -assembly -size

TIMES]
lassembly -size -item-name}

followed by the constituent item and group schema definitions.
The OCCURS phrase appears for repeating groups.

IDS

Group schema definition below the "record" level is specified in
COBOL. Definition at that level is covered in entry schemas
definition (see 3.5).

A security feature is provided by having a statement

AUTHORITY value

16q
172

www.manaraa.com

3-25

(1<value <4095) in a principal group schema definition.
This restricts all accesses to any element in the group to
users who include that value in their OPEN statement.

IMS

The format for group schema definition is

SEGM:NAME = group-name, PARENT = physical-parent-group-name,
BYTES = length-of-group-instances[FREQ =
frequency]

This is followed by the definition for the group sequencer item,
and, optionally, by the definitions of other item schemes con-
tained in the group schema. The FREQ statement, Which specifies
the expected number of members in an assembly, is used by the
system for storage structure planning purposes.

The group schema definition also contains storage structure
control statements, other group relation information, and, if
this is a "logical" group schema, the definition of its "sources"
(see 2.2.2.1). These aspects are covered under group relation
schema definition (see 3.4) and auxiliary data definition (see 3.10).

SC-1

A non-repeating group schema definition has the form

level group-name S

followed by the definitions of its dependent data elements. (S

stands for "statement", the SC-1 term for non-repeating group).

A repeating group schema is defined by a pair of statements:

level assembly-name F [ORDERED {INCR sequencer-item-
DECR

name-1 0211 sequencer-item-name-2]

level +l group-schema-name R

followed by the dependent element definitions.

The ORDERED phrase determines the sequence of groups in an
assembly.

173

www.manaraa.com

3-26

3.4 Group relation schema definition

The concept of group relation and its schema attributes have been
described earlier (see 2.3). Among surveyed systems DBTG, IDS,
and IMS provide for explicit definition of group relations. In
DBTG, this definition is separate from the group schema defi-
nition; it is a part of it in IDS and IMS. In other systems
which have this kind of structure, the only relation allowed is
superior-to/subordinate-to, and its definition is implied by the
definition of the hierarchical entry structure.

DBTG

The system name for group relation is "set". The format for its
definition is:

SET NAME IS relation-name MODE IS storage-structure-control

ORDER IS [ALWAYS]

LAST
NEXT
PRIOR

[[SORTED[INDEXED [NAME IS index name]]

The ORDER statement determines whether new groups will be added to
an assembly before the FIRST or after the LAST existing group,
(PRIOR) or after (NEXT) the current group (see 7.4.1). slx,e.rrin,
either indexed or as specified by:

rWITHIN RECORD-NAME
BY DATABASE-KEY*

NOT ALLOWEJ[

FIRST
DUPLICATES ARE LAST

If RECORD NAME, the group identifier is used; if DATABASE-KEY, the
unique identifier for the group in storage is used. The DUPLICATES
clause specifies whether new groups with the same identifier as one
or more others in the assembly will be added before or after them,
or not at all. ALWAYS indicates Lilat the ordering of groups in an
assembly is to be restored to its original state after the assembly
has been re-ordered by some user-written program.

The next statement in the definition is

OWNER IS 'parent -group -name)

1SYSTEM

171
174

www.manaraa.com

3-27

which indicates the parent group schema in the group relation, or
(by SYSTEM) that there is a single assembly of this group schema
in the system, whose parent is the system itself.

The OWNER statement is followed by:

MEMBER IS dependent-group-schema-name

MANDATORY 'AUTOMATIC}
(MANUAL

OPTIONAL

[LINKED TO OWNER (see 9.3)]

[DUPLICATES ARE NOT ALLOWED FOR item-name-1

This statement specifies the dependent group schema in the
relation. Any number of MEMBERS may be defined for one group
relation.

The MANDATORY/AUTOMATIC phrase relates to insertion and deletion
of groups in an esembly (see 2.3.3.2 and 7.5.3).

The DUPLICATES allows specification of a concatenation of items
for which duplicate values will not be allowed.

The next clause in the statement gives the rules for selecting
a particular instance of this group relation (that is, parent
group and dependent assembly) for accessing of a dependent
group. Its format is

SET OCCURRENCE SELECTION IS THRU

'CURRENT OF SET
LOCATION MODE OF OWNER [USING item-name-1[,item-name-2]...]}

The CURRENT option selects the current group relation instance.

If LOCATION MODE OF OWNER is specified, the selection is con-
trolled by the LOCATION MODE clause in the definition of the
parent group schema in this relation (see 3.5). If the location
mode for that group is in turn via a group relation, the system
may have to trace backwards through a chain of group relation
schemas until one is found whose instance can be located directly.

172
175

www.manaraa.com

3-28

The named items are used to select specific instances in an
assembly during this process, by matching values in the instance
with values in the User Working Area.

If a group schema in the chain mentioned above may be a dependent
in more than one relation, a modified form of the statement allows
the user to specify completely the path to be followed through the
interconnected relations:

SET OCCURRENCE SELECTION IS THRU group-relation-name-1

USING group-relation-name-2 [,group- relation- name -3]

To determine sequencing within an assembly in conjunction with
the SORTED option, the member statement may be followed by:

IASCENDING* [RANGE] KEY IS item-name-1[,item-name-2]..
DESCENDING

FIRST
DUPLICATESDUPLICATES ARE LAST ALLOWED

LNOT

The RANGE option is used in conjunction with facilities which search
an assembly for a group in which an item value matches an input
value. If RANGE is specified, a match will occur on the first
group in the sorted assembly in which the item value is equal to or
greater than the input (rather than requiring equality).

PRIVACY LOCKS and alerting can be defined for group relations, in
the same way as for items (see 3.2).

IDS

A group relation is defined by placing statements of the form

98 group-relation-name CHAIN MASTER

[

FIRST
CHAIN ORDER IS LAST

SORTED

in the definition of the parent group schema in the
COBOL Data Division (one such statement for each relation of
which the group schema is a parent). 98 is a special level.

The CHAIN ORDER phrase controls whether new groups will be added
to an assembly before the FIRST group, after the LAST one, or
according to the dependent group sequencers.

17
176

www.manaraa.com

3-29

The dependent group schema definition contains the statement

98 group-relation-name CHAIN DETAIL

CURRENT
SELECT MASTER

UNIQUE
[MTH -KEY IS item-name-1]

(ASCENDING }
DESCENDING KEY IS item -name -2[,item -name -3]...

DUPLICATES [NOT] ALLOWED

If the UNIQUE option is used, MATCH-KEY specifies the item schema
in the dependent group whose value determines to which parent
group the dependent group is attached. Otherwise the current
instance of the parent group schema is used. Item-names-2, -3,
... control sequencing in an assembly. The names are in de-
creasing order of significance.

The DUPLICATES clause refers to the set of item schemes in the
KEY statement.

IMS

A group schema may be a physical dependent of one group schema
and a logical dependent of another. This is defined by in-
cluding in the group schema definition a statement of the form

PARENT = physical-parent-group-name, logical-parent-group-
neme

In order to be able to set up various sorts of auxiliary data
structures (see 3.10), the group schema definition must contain
storage structure control statements which will cause appropriate
mechanisms to be provided (see 9.5).

Placement and ordering of groups in an assembly is determined by

RULES

[

= (insert-type,delete-type,replace-type ,LAST*
,HERE

where the "type" can be P (physical), L* (logical), or V (virtual)
to indicate which kind of assembly with which the group is
associated is to be used for insertion, deletion, or replacement.
The "type" also has consequences in how the operation is per-
formed. If a group identifier is not defined, or is not unique,
the definition further can specify whether the group is to be
inserted before the FIRST group in the assembly, after the LAST
group, or before the current one.

1 7 4

177

www.manaraa.com

3-30

3.5 Entry schema definition

A group entry schema definition usually consists solely of the
union of the definitions of its constituent item and group schemas.
This often causes the entry definition to have the same format
as the definition of any other repeating group.

A tree or plex entry definition includes specifications of the
hierarchical relationships between group schemas in the entry
schema.

The definition of the relationships between groups in the entry,
similarly to the definition of item-group relationships, can be
done in one of the following ways:

The group schema definition contains the name or other
reference to the group schema at the next higher level
in the hierarchy (This is usually omitted in the defi-
nition of a root group, for which the higher level
element is the entry itself).

The group schema definition contains an explicit level
number, which defines its place in the hierarchy. In

this case a definition at one level is generally followed
by the definition of the elements at the next level down.

In almost all systems an entry has an identifier, often consisting
of the value(s) of the identifier item(s) of the entry-defining
group (see 2.4).

GIS

The hierarchical structure of the (tree) entry is defined by the
level numbers in the group schema definitions; that is, a group
schema has as subordinates those schemas with level number one
greater than its own. (There can be only one such subordinate at
any level except the lowest).

The entry identifier is composed of the set of item schemes in
the root (entry-defining) group schema which have been defined
to be sequencer items for that group by a "SORT = iterA-name,..."
statement, and for which the phrase "UNIND = Y" appears.

175
178

www.manaraa.com

3-31

MARK IV

The definitions of the item schemas comprising a group schema all
contain the group schema number, and level, of that group. Some
of ,:he items are count items for subordinate group schemas; in
that case, the column headed "Count field for segment" contains the
number of the subordinate schema. The hierarchical relationship
is established by the occurrence of the count item for the
subordinate group among the items of the higher level group.

NIPS/FFS

An entry definition defines a two-level hierarchical entry. The
definition is composed of the successive FIELD and GROUP state-
ments that define first the "fixed set" and then successive
principal repeating group schemas on the second level of the
hierarchy. The definition terminates with one or more VSET
statements if "Variable sets" are defined (see 3.3).

The entry identifier is indicated by the set of item schemas that
contain C in the code attribute (see 3.2).

The principal items in the entry have a code attribute value of X
in their schema definitions.

TDMS

A group schema contained in another has a defining statement of
the form j%

schema-number group-name (RG IN
parent-group-name (

1parent- group - numberf'

There is no entry identifier.

UL/1

The item schema definitions in the entry definition must be in
sequence in ascending order of item number with no numbers omitted.
A list of items which are date stamped may be added after all item
schema definitions.

The entry identifier is taken to be the first item in the defi-
nition unless a clause

IDENTIFIER item-name-1 [item-name-2]...

is included in the identification section.

Hierarchical relationships between group schemas in the entry
are given in a separate section, called the Structure Section,
using two statement types:

176
179

www.manaraa.com

3-32

parent-group-name (item-name-1 [item-name-2]...)

dependent-group-name (item-name-3 [item-name-4]...)
REPEATS UNDER parent-group-name

COBOL

The entry schema is defined as a repeating group at level 01;
the entry name is the defined name of that group schema.

Group schema relationships are implied by the level numbers and
ordering of the group schema definitions.

DBTG

The entry name is given by

RECORD NAME IS entry-name

Relationships of group schemas ("data aggregates") within the
entry are implied by their level numbers, and the ordering of
their definitions.

PRIVACY LOCKS and alerting may be defined for entry schemes in
the same way as for items (see '3.2). In the entry case the
facility list is larger, reflecting such operations as insert
and delete, as applied to entry instances in the file.

The entry schema definition also contains accessing and storage
control information (see 9.3 and 9.5).

IDS

The entry name and number are given by:

01 entry-name
TYPE IS entry-schema-number

Group relationships within the entry are implied by level number
and definition ordering. Accessing and storage control in-
formation is also given in the entry schema definition.

INS

The entry is a simple group and consequently does not have an
internal structure of group schemas.

SC-1

The entry schema definition conforms to the format for a repeating
group schema definition.

Group relationships within the entry are implied by level
number and ordering.

180

177

www.manaraa.com

3-33

3.6 File schema definition

In all surveyed systems the definition of the attributes of the
file schema is followed by the definitions of its constituent entry
schemas. In most systems, only one such entry schema is allowed,
resulting in the entry and file schemas being effectively equivalent
and in all entries in the file having the same structure.

Some systems allow multiple logical data structures to be associated
with a single physical entry type as reflected in the stored data
(see 3.10).

The outline definitions below show not only the struccure of the
statements unique to the file schema definition, but also the
sequence in which all major elements are present in the file schema
definition. The indenting used is only for clarity, and does not
represent system format requirements. "Group" will mean repeating
group.

GIS

Security at the file level is defined by

MINFQS = query-access-code

MINFUS = update-access-code

where the access codes are arbitrary numbers in the range 0-127 which
have to be associated with user security codes by a system utility
(see 8.2.2). The overall structure of the definition is

DDT FILENAME = file-name [, access-limitation] ...
[SYN:NAME = file-name synonym]...

FLD (item schema) statements for the root group schema
SEEM (group schema) statement ("segment")

FLD statements} for its dependent group schema
SEGM statement

FLD statements}
for the last group schema

SEGM statement

178
181

www.manaraa.com

3-34

MARK IV

Spaces in the heading part of the file definition sheet (see Figure 3-1)
allow specification of the file name, file identification for docu-
mentation purposes, deletion of the file rather than definition,
storage structure control, and glossary output. The latter, a listing
of the definitions of the elements in each entry, is according to the
codes:

blank no glossary

A alphabetical order of element name, within
segment.

abbreviated alphabetical order

B location order within the file

The structure of the definition is

file-name FD

file-identification

delete-code

glossary-code

storage structure information

item schema definitions

NIPS/FFS

in any order except that column
heading lines must follow the
corresponding item schema defi-
nition line.

In addition to the definitions of its constituent items and groups,
the file schema definition includes identification of input and
output conversion tables and subroutines, and output edit masks that
are referenced in any item or group schema definitions.

182

179'

www.manaraa.com

3-35

The file definition structure is

STRUCTURE file-name

CLASSIFICATION security-classification

[(TABLE table-name rINPUT I

SUBROUTINE subroutine-name] IOUTPUT J
input-length

output-length input-item-type output-item-type] ...

[EDIT edit-mask-name 'combination-of-blanks, zeros, ampersands,
dashs and

FIELD (item schema) statements for the set of
alLd principal item schemes

GROUP (non-repeating group schema) ("fixed set")

FIELD statements for the first
and repeating group schema

GROUP ("variable set")

FIELD statements for the last
and repeating group schema

GROUP ("variable set")

[VSET statement] ... for variable length non-

repeating groups
END

TDMS

The outline of the file schema definition is

DATA BASE NAME IS: file-name

TERMINATOR IS: end-of-entry-definition-symbol

item schema statements

group schema statements

item and group
schema statements

group schema statements

group schema statements

end-of-entry-definition-symbol

183

180

for principal items

for first principal group

for elements contained
in first group

for second principal group

for last principal group

www.manaraa.com

3-36

Since TDMS allows missing items, multiple entry schemes ("user

schemes") can effectively be incor1.7orated into a single file by
having the single entry schema which is defined to the'system be
composed of the aggregate of all item and group schemas in all user
schemas, but arranging for any specific entry to contain values for
only those item schemas belonging to a single user schema, and null
values for the others.

uL/i

File schema definition, the principal function of the Establishment
Division, is stated according to the following outline:

ESTABLISH file-name

IDENTIFICATION

item statement

item statement

item statement

CODES

for first item schema

for second item schema

for last item schema

code table statement
for item schemas

code table statement

STRUCTURE

group statement for first (non-repeating or
repeating) group

group statement

PROCEDURE

procedure statements

VALIDATION

for last group

required if procedures are
used in validation

validation statements in selection criteria language

Multiple user schemas can be set up by using the ability of the
system, to have one set of entries with values present from only one
schema, and the rest of the values missing; another with values pre-
sent only from a different schema; and so on.

181
184

www.manaraa.com

3-37

COBOL

Multiple entry schema definitions are allowed, each beginning at
level 01.

The structure of the file schema definition is

DATA DIVISION

FILE SECTION

FD file-name

storage structure statements

[;DATA RECORDS ARE entry-name-1
[,entry-name-2] ...]

01 entry-name

02 item schema statement

02 item schema statement

02 group schema statement:

item and group schema
statements

if there are multiple
entry schemas (for
documentation only)

for first entry schema

for first principal item

for last principal item

for first principal group

for elements contained
in first group

02 group schema statement for last principal group

01 entry-name

DBTG

for second entry schema

Privacy locks for the file schema itself may be defined by a
statement of the same form as that used in item schema definitions.
Facilities whose use can be protected include setting of LOCKS, and
DISPLAYing, COPYing, or ALTERing the schema.

The user must associate one or more areas with the file. An area
represents a defined portion of the total physical data base as
stored on a device; its definition is done outside of the data defini-
tion. The association is specified in the file schema definition by:

AREA NAME IS area-name [TEMPORARY]

[PRIVACY LOCK statement] ...

[ONIC)cPLEoNsE} FOR facility-list CALL procedure-name] ...

185

1.82

www.manaraa.com

3-38

TEMPORARY specifies that a separate copy of the area will be set up
for each run unit accessing any part of the file. It disappears
when the run unit terminates, and entries in it cannot be mixed in
group relation instances with entries from non-TEMPORARY areas or
from TEMPORARY areas of other run units.

The PRIVACY LOCK statement for "area" has the same format as for the
file schema. Facilities include update, retrieval, and implementor
defined support operations.

The alerting facility invoked by the ON statement causes specified
procedures to be called when the area is opened or closed (which must
be done by any run unit using the file) for any of the given retrieval
or updating functions.

The structure of the file definition is

SCHEMA NAME IS file-name

AREA NAME IS area-name
area statements

RECORD NAME IS entry-name
storage structure statements
alerting statements
security statements

for first entry schema

item schema statements for principal items

group schema statement

item and group schema

404

group schema statement

for first principal
group ("data
aggregate")

for elements con-
tained in first
group

for last principal
group

RECORD NAME IS entry-name for nth entry schema
SO

186

183

www.manaraa.com

3-39

SET NAME IS group-relation-name
storage structure statements
alerting statements
security statements

group relation schema
attribute statement

OWNER group schema statements

MEMBER group schema statements

MEMBER group schema statements

SET NAME IS group-relation-name

RECORD NAME IS entry-name

IDS

for first group relation
(must have been pre-
ceded by definitions
of groups involved in
relation)

for parent group

for dependent groups

for second group relation

for next entry schema

The file definition is incorporated with the COBOL Data Division, and
the item and group schema definition structure is much the same.

The outline of the file definition is as follows:

IDS SECTION

MD file-name
storage structure statements

01 entry-name
storage structure statements

item schema statements

group schema statement

item and group schema
statements

group schema statement

98 group relation schema
DETAIL statement

98 group relation schema
DETAIL statement

98 group relation schema
MASTER statement

98 group relation schema
MASTER statement

187

184

for first entry schema

for principal items

for first principal group

for contained elements

for last principal group

for relations in which
this entry is a
dependent

for relations in which
this entry is a
parent

www.manaraa.com

3-40

IMS

The structure for the file schema definition is

DBD NAME = file-name storage structure control
(also specifies if this is a
logical rather than physical file)

SEGM (group schema) statement
for the first group

FIELD (item schema) statements

SEGM statement

FIELD statements

SEGM statement

FIELD statements

DBDGEN

FINISH

END

SC-1

for the second group

for the last group

Initial file definition is viewed as a special case of revising the
definition of the data, considered as a tree structure. Therefore
if no files have been previously defined, a new file schema is added
after the DATAPOOL, the (in this case, empty) node containing the
files. If files already exist in the system, then the new file is
added after the last old one. Wher-ver a structure revision is
specified, the position in the tree of the element after which the
new elements are being placed is defined as level zero, and level
numbers of elements being added are specified relati,7e to that one.

The structure of the definition is

ADD AFTER
(DATAPOOL

'last -file-name)

"F" file statement

"R" file schema statement

188

185

for first file, considered
as an assembly of the
entry-defining group schema

for first file schema, con-
sidered as the entry-
defining group schema

www.manaraa.com

3-41

item schema statements for principal items

"F" group statement for first principal group
"R" group schema statement schema

item and group schema statements for contained elements

"F" group statement 1 for last principal group
"R" group schema statement I schema

"F" and "R" file schema for second file
statements

60.

EOJS

3.7 Data base schema definition

Data base schema definitions consist of the collection of file
schema definitions.

3.8 Processing and storage of the data definition

Input of the data definition to a system is in terms of symbolic
names for the data structures, and user references to the structures
in such operations as writing a program or performing an interroga-
tion are also expressed symbolically. For storing and accessing
the data, these symbolic names have to be mapped into physical storage
references. Auxiliary data definition, that is, definition of the
structure of the data base as seen by particular users or programs,
is also in symbolic terms, and a mapping is required between the
different symbolic names for the same stored values (see 3.10).

Consequently two types of mapping or binding can take place.

Equating symbolic names in two different data definitions.

Equating symbolic names to physical storage references.

These mappings can take place at various times, for example:

data definition inpt.t

program compilation

program loading

file opening

value access.

189

186-

www.manaraa.com

3-42

In some systems the data definition is an integral part of the program,
and the first two phases above are carried out in a single process of
compilation. In most, however, the data definition is a separate entity,
processed independently. The data definition binding varies with the
stored form of the data definition. Mapping to physical storage refel-
ences at data definition time often takes the form of conversion of the
data definition to a table, containing, for example, relative character
positions of item values, and consulted at program or process execu-
tion time.

Binding at program compilation time may result in transformation of
the symbolic references in the data definition into absolute operand
addresses in program instructions.

The processing of the data definition also includes converting into
stored form the definitions of all defined attributes such as security,
group relations, data type, etc. This information may be stored in
symbolic, coded or relative form in tables, or it may be incorporated
into the logic of processing programs.

In addition to storage in their converted form, user inputs such as
the data definition and procedures may be stored in symbolic form
by the system, in which case the definition may be accessible in that
form as a data file to the user, using the normal interrogation facil-
ities of the system.

GIS

GIS has a separate data definition task. Data definitions are input
and converted to an internal form, where they are accessible to the
system in compiling user procedures.

MARK IV

The data definition is input separately, is stored in a catalogue of
such definitions, and is automatically accessed when the file is
interrogated or updated,

NIPS/FFS

Eq-ating of different symbolic names takes place during file
redefinition (see 3.9) and during updating (see 5.3.2). The equating
of symbolic names to physical storage references takes place at
program compilation time.

The stored data definition is « combination of symbolic and coded
information, stored in special format records at the beginning of the
data file. It contains such information as the user assigned names
of the data elements, their lengths and relative positions in the
physical record, codes that indicate usage and type of representation,
and editing and conversion specifications.

. 190

187-.'

www.manaraa.com

3-43

TAMS

The data definition, which is input separately, is used to set up the
contents of various tables (in particular CDEFINA; see 9.3) which the
system uses interpretively to access data.

UL/1

The data definition is translated into a stored data definition which
the, system accesses in order to find the data contained in each entry.

COBOL

The data definition is an integral part of the program, and is
processed at the time the program is compiled, to be reflected in
absolute addresses or their equivalents in program instructions, and in
program logic.

DBTG

The "schema" defines the overall data base as seen by the data
administrator (see 3.10). It is independent of any program or pro-
gramming language, and is processed independently, with the method of
processing and stc'rage being defined by the implementor.

IDS

The data definition is an integral part of a COBOL program, and is
represented it a data structure table which is generated at compile
time, and which is used interpretively.

INS

The data definition is processed to create a Data Base Description
table which is referred to at run time to resolve symbolic references
passed to it by the user program.

SC-1

The data definition process is carried out in two phases. The data
structure for the whole data base, for all users, is defined, and
then processed by Data Structure Definition. Each user may further
set up one or more definitions of the data structure as he views it.
Such an auxiliary data structure definition (see 3.10) is processed
by Data Bindlist Definition. Correlation of the two definitions is
actually done at file opening time (see 7.5.1.1).

191

188

www.manaraa.com

3-44

The root node in the data structure is called the DATA BASE, and is

a group which has a standard set of dependents. It contains the

DATAROOL (the user files) followed by all the system tables. The

system tables include the stored data definition, the indexes, the

dictionary of data names, physical location tables, programs, the

user security list, and the auxiliary data definitions. All of these

system files are stored and accessed using the normal system facil-

ities although they are protected by high security restrictions.

3.9 Revision of the data definition

After the data structure has been defined initially, it may be

necessary to modify it (add new item schemas, or change an item value

length, for example). It may be necessary to re-enter the entire

definition and write a procedure to restructure the stored data;

alternatively input of only the changes may be required, with or

without automatic reorganization of the stored data. This process of

replacing an old definition with a new one should be distinguished

from the facilities for setting up a definition auxiliary to the

original (see 3.10).

GIS

Revision is limited to adding and deleting synonyms for item and file

schemas:

ADD [DELETE] FILE [FIELD] schema-name

and to deleting an entire file schema definition.

Conversion of the stored data to a new structure, after a whole new

definition is input, must be done by a user-provided procedure, which

in many cases can be a GIS procedure. Parts of a previously input

and stored definition can be incorporated in a new one with a CALL

statement.

MARK IV

Portions of an existing file definitiol, may be deleted or changed by

spy ifying ta item delete on the File refinition form followed by a

redefinition of the item desired. Elements which can he changed are:

Data type and length of an item

Location of an item within a group

Group an item belongs to

Specification of group identifier item

192

189.

www.manaraa.com

3-45

The contents of the file itself are not changed. The user must write
a program to do the restructuring, or it may be possible to accomplish
it by using the old file as "transaction" input, and arranging for
values to be copied appropriately by the system from the input to the
restructured file.

An entire file definition may be deleted by specifying DELETE and the
file name on the File Definition form.

NIPS/FFS

File revision can take place when the data has been defined for both
the old and the new file. This means that the user must prepare a
complete data definition for the new file and execute a "file
structuring" run so that the data definitions for both files are
available to the system in system format on direct access storage.

In setting up the new file, items in the old file may be omitted;
item names, sizes, and types may be changed; and new items may be
added. If items are added, no data can be put into them during file
revision.

In the new file, repeating groups from the old file may be deleted
or relocated but they may not be split or merged. New repeating
groups may be added, but as with items, new data will not be inserted
as a result of file revision.

The actual file revision takes place by executing the File Revision
Processor (FR), whose minimum input is the pair of statements.

FILE = old-file-name
NEWFILE = new-file-name

In this case, data from the old file is transferred to the new file
where item or repeating group names are the same. FR accepts item
name changes in the form:

old-item-name = new-item-name

The user can ask for all or part of the generated file revision pro-
gram to be printed or punched, and for the program to be generated,
but not used to place new data in the file.

TDMS

All parts of a file definition may be changed prior to creation of
the file. Changes are made by specifying use of an existing descrip-
tion and rewriting individual item or group descriptions (simple
replacement). Item or group descriptions may also be deleted using
the DELETE command. Additions are made by entering a description
containing a previously unused number and name.

www.manaraa.com

3-46

The data definition may be changed after creation of the file, but
the file will then have to be recreated.

UL/1

The following revisions to the stored definition are possible:

definition of new item schemes

deletion of existing item schemes

o modification of name and type in existing item schemas

If a new item schema is defined, then a slot is created for a value
in each instance of an entry. If an item schema is deleted, then the
associated values in each entry instance are also removed from the
file. Changes in item name allow the user to delete or replace an
existing name, or to insert a name if one was not previously defined
(that is, if only the required item number had been defined). Changes
in item type are restricted to changes in either direction between
coded items and alpanumeric items. These do not necessitate changes
to the data values. A revision to the value set for a coded item
also does not require access to the data.

Finally an item (either existing or new) can be defined as a repeat-
ing item, that is a repeating group consisting of one item. This
does not require any change to the data, but facilitates the addition
of extra values to the item using the Update function.

COBOL

Any portion of a definition may be placed in a library, given a
name, and incorporated bodily into a subsequent definition by includ-
ing in that definition a statement of the form

COPY stored definition name [REPLACING old-schema-name
BY new-schema-name) ...

The REPLACING phrase allows new names to be substituted for the ones
in the stored definition.

No other revision facility is provided.

DBTC,IDS

No revision facility is specified.

194

191-

www.manaraa.com

3-47

CIS

A new principal group schema (together with its subordinate group
schemas) can be added at the end of the entry schema (that is, to the
right of the last old principal group schema, looking at a tree-
diagram of the data hierarchy) without having to reprogram or reorgan-
ize the stored data. If the new schema is inserted before the end,
directly affected data(that is, within one data set group; see 9.5)
has to be reorganized, but application programs do not need to be
modified. Since the entry is tree-structured, and since the groups
at a given level in the tree are processed left-to-right, if the new
schema was the object of most of the processing activity, it would
save running time to place it before (to the left of) groups which
otherwise would not need to be accessed, rather than after them.

If a group schema now used by a program is moved tc a different point
in the hierarchy, either laterally or vertically, the program will
'probably need to be changed, since, for example, a GET NEXT (see
7.5.2.2) would refer to a different group. However, if it is possible
to arrange a set of programs so that each references only the root
group and one principal group schema, the latter can be rearranged to
improve accessing, as described abode, without disturbing the indi-
vidual program.

Group schemas can be deleted from the ,tructure, with nearly the same
consequences as For insertion.

Reorganization of the stored data is handled automatically by a group
of system utilities.

SC-1

Definition of the data base is done incrementally. The entire data
base is hierarchical and a single execution of the data definition
function is used to add a subtree to (or modify or delete) any
rode in the existing data structure. The first line of input
to the data definition or revision function identifies the node
where the new subtree is to be added.

The new subtree maybe added immediately following ("AFTER") and on
the same hierarchical level as the named node. Alternatively, if a
null node exists in the data structure the subtree may be added "AT"
that point, that is, replace the null node. A null node is created
through some previous data definition action, and is a special data
structure whose only attribute is a name. It contains no values, and
no dependent data structures.

195

1. 9 2-

www.manaraa.com

3-48

The specification is done in the form

ADD
{AFTER}

element-nameATTER

[new-element-definition-2] ...

"Element-name" must be qualified by IN-phrases to resolve ambiguities.
Level numbers in the new element definitions are relative, taking the
level of "element-name" to be zero.

A REMOVE element-schema-name is also provided. A statement of the
form

MODIFY element-schema-name-1 k,.tyword-1 new attribute-

value-1 [keyword-2 new-attribute-value-2] ...

allows the user to change any individual element attributes (e.g.
length, type, etc.) in the definition.

The system keeps a central directory if file structures which is used
for accessing, unless, at file open time, the system detects that the
central definition c.as been revised since the file was last closed.
In that case, to interpret the data in the file it uses a "distributed
directory," which is stored with the file itself. If the file is
being updated, the new version being written out will be generated
under the revised definition, causing the data to be automatically
rearranged to conform to the central directory. Alternatively the old
file can be directly converted to the new structure by executing the
"Restructure" function.

3.10 Auxiliary data structure definition

A system may provide for multiple logical data structures to be
associated with a single set of stored data, each of which reflects
the data as viewed by the data adminstrator, or a particular user or
set of programs. Examples of differences between structures are

There may be different names for item and group szhemas

Item value types, lengths, and other attributes may vary

One structure may be a subset of another

Group schemes may be organized differently.

The multiple structures may be defined at the same time, or one may
be input initially, and the others added later, either separately,
or each attached to an individual program. Such added definitions
are supplemental to the original one; they do not revise or replace it.

196

B3'

www.manaraa.com

3-49

The system may view all the definitions as having equal status, that
is, all definitions have the same relationship to the system as a
whole, or there may be a single primary one, and a number of auxiliary
definitions. The auxiliary definitions are usually done in. the same
form as the primary data definition. In the case of equal-level
definitions, the system may simply allow multiple ontry schema defini-
tions, in which case it is generally true that each of these
definitions must correspond exactly to the structure of the data as
stored. For instance, an item can be renamed, but if a set of item
schemas is omitted, a new dummy schema having the same total length
must be defined instead. Some systems, however, provide more flexi-
bility, allowing sub-sets of item schemas to be defined and setting
up automatic type and length conversion.

On the other hand, the system may provide for a single primary data
definition, set up by the data adminstrator and applying to the whole
data base, independent of particular users or programs; and allow
each user and/or program to further define an individual data struc-
ture, within the framework provided by the principal one. This is
generally found only in systems with host language facilities.

Sufficient information must be provided in such an auxiliary data
definition so that data reference mapping or binding, as described
earlier (see 3.8) can take place, as exemplified by the making of
an explicit association between data names in a particular program and
the names of their counterparts in the data base if they are di_fferent.
The auxiliary definition also provides the basis on which the user
program buffer area can be established (see 7.4.2).

The report of the CODASYL Data Base Task Group has outlined the
purposes accomplished by an auxiliary definition, as follows:

It need not describe the entire logical structure or the
whole collection of stored data, but only those portions
of concern to specific programs, in the form in which
they are known to those programs.

An individual programmer need not be concerned with the
universe of the entire data Lase but only with those
portions of the data base which are relevant to the
program he is writing. Since the data base may contain
data which is relevant to, and shared by, multiple
applications, this may be important to ease the writing,
debugging and maintaining of programs.

A program is limited to the subset of the data that is
known to it via its auxiliary definition. To a large
extent, this automatically ensures the privacy and
integrity of the res_ of the data base from that program.

197

1
q4

www.manaraa.com

3-50

A measure of data independence is provided for programs

in that certain changes may be made to the primary
definition-and the data base adjusted accordingly -
without affecting existing programs using that data.
This is possible because the auxiliary definition may
vary in certain important aspects from the primary
definition of which it is a subset.

It allows a common language to be specified for defining
a data base while allowing that part of the data base
known to a program to be described in a manner which is
oriented towards the conventions of the language in which
that program is written.

The Data Base Task Group has also stated the following additional
points regarding auxiliary definitions. These characteristics are
generally present in systems offering auxiliary definition facilities.

Object versions of primary and auxiliary definitions may
be compiled independently of any user program and of
each other, and stored in a library.

An arbitrary number of auxiliary defiricions may be
declared on the basis of any given primary definition.

The declaration of one auxiliary definition has no effect
of the declaration of any other and they may overlap.

A user program invokes an auxiliary definition.

Each auxiliary definition must be named and can be
invoked by an arbitrary number of programs.

Only the part of the logical data structure included in
the particular definition invoked by a program may be
referenced by that program.

al Since the auxiliary definitions are host-language-oriented,
a program must invoke one that is consistent with its
source language.

GIS

The ALTR facility allows the stored data to be described by multiple
entry schema definitions.

MARK IV

An entry can be redefined if the redefined structure corresponds
exactly to the atored data.

198

www.manaraa.com

3-51

NIPS/FFS, TDMS, UL/1

No provision is made for auxiliary definitions.

COBOL

Any number of logical structures can be applied to a single file by

defining each of them as an entry. The structures all must exactly

reflect the stored data.

DBTG

Full auxiliary data definition facilities are provided, in the form

of the "sub-schema". So far, the data definition language for the

sub-schema has been specified in the case in which COBOL is the host

language. Other, future, sub-schemas will have comparable facilities.

In general the sub-schema, as described in the report of the DBTG,

provides the ability to:

Select the entries or partial entries from the primary
definition that are of interest to the invoking program.

Describe the structure, format, representation and other

general data characteristics of data base data in a manner

that is consistent with the data description facilities

of the host language.

Establish the correspondence between primary (schema)

and auxiliary (sub-schema) descriptions of the data item

representations and intra-record structures.

The content of the sub-schema entry must be a sub-set of the entry

described in the schema. Item schemas may be re-arranged and/or

combined into group schemas to introduce additional structure into

the record.

The language of the sub-schema allows specification of hierarchical

record structure and data item descriptions as currently defined in

COBOL. The data base data descriptions that are created using this

language are similar to the traditional COBOL input-output record

description entries subordinate to file descriptions (FD's).

However, the data named in each sub-schema entry is assigned locations

in the invoking program's User Working Area; the data description

entries, therefore, describe the format and characteristics of data

as they appear in the UWA.

199

96-

www.manaraa.com

3-52

The following particular differences can exist between the structure
as given in the primary definition and in an auxiliary definition:

Only those elements which are defined in the auxiliary
definition can be referenced by a program using this
definition. All others contained in the primary defini-
tion are "removed from view". (Omission of a group also
removes its constituent elements).

Characteristics of item schemas may be different. The
general rules for conversion between types are part of
the specification of the data definition language. It
is the responsibility of the implementor to define the
correspondence between data types in the primary and
auxiliary definitions. Conversion will be carried out
whenever item value types differ in the schema and sub-
schema, and it is the subject of a GET, STORE, or
MODIFY function.

Privacy locks anywhere in the structure may be different

Ordering of elements within a higher level element may
be changed.

Auxiliary group schemas may be formed whose constituents
are primary item and group schemas, and primary ones
can be split

A repeating group schema, representing a 1-dimensional
structure, may be converted into a hierarchy of group
schemas, representing a multi- (in COBOL, up to 3-)
dimensional structure whizh must preserve dimensional
compatibility with the old).

"Set selection" criteria (see 3.4) can be changed.

New "areas" (see 3.6), or new entry accessing restric-
tions based on areas, can be defined.

In general the format and language for all statements in the auxil-
iary definition conforms to what has already been stated for DBTG, or
the COBOL usage, as appropriate for the element being defined, and
all facilities of either are available. Exceptions to that philos-
ophy will be covered here, as well as statements required by the
definition itself. In the case of such system functions as security,
to the extent that they are not specified at a particular point in
the auxiliary definition, the specification in the primary definition
will be used.

200

www.manaraa.com

3-53

The format for unique parts of the COBOL sub-schema definition is

IDENTIFICATION DIVISION

SUR-SCHEMA NAME IS sub-schema-name OF SCHEMA NAME
schema-name

[PRIVACY LOCK FOR
DISPLAY

COMPILE
IS privacy -data]

ALTER

[PRIVACY KEY FOR COPY IS value]

The functions following PRIVACY LOCK are:

LOCKS access item, group, etc. privacy locks
DISPLAY view sub-schema
COMPILE use in a program
ALTER change

Portions of the primary definition can be copied by statements of
the forms

COPY schema-name-1 [schema-name-2] ...

COPY ALL structure-names

Schema-name-1, schema-name-2, ... may be area, group or group
relation names.

"Structure-names" can be AREAS, RECORDS, or SETS

Different set occurrence selection criteria (see 3.4) can be
specified by

or

SET OCCURRENCE SELECTION FOR MEMBER dependent-group-
name is THRU group-relation-name-1 [group-relation-
name-2] ...

Name changes of elements at any level are accomplished in a
RENAMING section:

structure-name NAME schema-name-1 IN SCHEMA IS CHANGED TO
schema-name-2 [, schema-name-3 TO schema-name-4] ...

201

198

www.manaraa.com

3-54

Structure-name can be any of the following:

AREA
RECORD
DATA
SET

area
entry schema
item or group schema
group relation schema

IMPLEMENTOR implementor element

It must be remembered that both the
are describing the same stored data.
tions, such as the maximum assembly
definition being no larger than the

primary and auxiliary definitions
This results in various restric-

size specified in the auxiliary
corresponding one in the primary.

Item valua conversion rules cover such points as the following:

Bits 0 and 1 in bit strings correspond to characters
0 and 1 in character strings.

to Strings are extended with blanks or zeroes and
truncated, on the right, with warnings or non-
completion if significant characters or bits are dropped.

Numeric values are converted according to straight-
forward rules, including taking into account the impli-
cations of the "picture".

IDS

The same auxiliary definition capability is provided as in COBOL.

IMS

The data administrator may design the organization of the physical
files ("physical data bases") (see Chapter 9) in accordance with
considerations of operational efficiency; he does so keeping in mind
the various user data structures ("logical data bases") that relate
to this data.

The basic elements of both application programmer (AP) and data
administrator (DA) data structures are the groups forming the tree-

structured entries. In effect, each can set up his own set of entry
schemas, with the data aduinistrator's reflecting the data as actually
stored, and each programmer's represeating the data as is most con-
venient for his program; all the group schemas in his trees, of
course, must appear somewhere in the data administrator set.

202

198

www.manaraa.com

3-55

The process can be thought of as starting with the definitior of the
structure according to the formats already described (see Chapter 2
and 3.2 to 3.6).

Logical
relation

EMPLOYEE SKILLS

SKILLS
NAME

Physical
relation

The application programmer's structure can now be defined, derived
from the above and also using the previously described formats:

Data base
group schemas

SKILLS

Logical
relation

SKILLS
NAME EMPLOYEE

Application programmer
group schemas

Primary
source

Secondary source

Primary source

EMPSKILL

LNAME

where his EMPSKILL schema is the same as the SKILLS group schema,
and his NAME group schema is the concatenation of the sources (see
2.2.2.1).

This is specified in his group schema definition by an additional
statement of the form

SOURCE = primary-source-group-name
,KEY

] [, secondary-

source-group-name
[DAYTAA

where KEY or DATA determines whether only the group identifier, or
the whole schema, is used as a component of the group schema being
defined.

203

200

www.manaraa.com

3-56

The system establishes the above logical data structure essentially
by setting up group relations of various kinds between groups in
different physical entries, these relations reflecting the structure
of the logical entry as the programmers have defined them.

In actuality the definition of each data base file contains also the
definition of programmer strictures associated with it.

When an application program is defined to the system, the definition
contains statements of the forms

PCB
SENSEG
SENSEC

TYPE = DB, DBD NAME = file-name
NAME = root-group-name, PARENT = 0
NAME = group-name, PARENT = higher-level-group-name

where the set of SENSEG statements begins with the root group, and,
working down through the hierarchy, defines all of the group schemes
("sensitive segments") to which this program is allowed access.

SC-1

After Data Structure Definition is done, a Data Bindlist Definition
(DBD) function must be run before any program is executed which uses
the programmer functions (see Chapter 7). A Bindlist (BL) is a
directory which relates item and group names and other attributes in
the auxiliary definition to those in the primary definition. It also
defines sub-sets of .00th the data structure (schema) and the file
(instances) to which this program will be bound. There may be any
number of auxiliary definitions for a given file. The DBD function
allows a auxiliary definition to be added, modified. or deleted. The
new definition must be given a unique name .

An independent bind list may be created for a sub-tree of the data
structure, conditioned by the actual stored data itself. This is done
by four kinds of statements:

ADD BL -name OlUSERNAME ap- root -name

[VERSION generation-data]

where ap-root-name specifies the application program (ap) name to be
given to the root of the sub-tree being defined. Without the VERSION
option, the system will use the current set of instances of the
named element in what follows.

01 [ap-root-name] ORDERED
}

[

IINCR
DECR

item-name-1

fINCR)
item aame-2 ...IF EQ da-root-name

DECK

[WHERE conditional-expression]

2011

201

www.manaraa.com

3-57

This specifies by giving its primary definition (data administrator-
da) name, the node in the data structure tree at which the root of
the sub-tree being defined is located. This node must be an assembly
(F for "file").

The WHERE clause, if used, allows the program to be bound to a
particular assembly (and its dependents) in the data, by singling out
the higher level group instance in which that assembly is contained.
The conditional expression (see 7.4.4) must be such as to leacl to a
unique such instance. (Any OR must be satisfied by only one alter-
native.) If WHERE is not used. then the program is bound to the
whole file. for example, if the program was to be concerned only
with the skills for a particular employee in a given department, the
two statements might read:

ADD SKLYSIS OlUSERNAME JOESKILL

01 JOESKILL F EQ SKILLS WHERE ORGCODE
EQ 2340 AND EMPNO EQ 4792

02 ap-group-schema-name R EQ da-group-schema-name
[WITH conditional-expression]

This establishes the equivalence between the application program and
data administrator names for the group schema associated with the
assembly being bound. The conditional expression allows selection
of a particular instance in the assembly (R for "record"). This

statement might read;

02 JOEREC R- EQ SKILLREC WITH SKLCODE EQ 5711

level
fap-name type length EQ de-name}FILLERW n EQ

Additional statements of this form allow redefinition of name, type,
and length of lower level elements in the data. The FILLER W option

allows the user to specify n bytes to be skipped in the user working
area, to achieve desired word alignment.

If only the sub-tree and conditional facilities are needed (i.e. no
element names need to be changed), the above statements can be modi-
fied by including a phrase

COPY {`LL
da-name

lst-included da-name TO 1st excluded da-name

205

2O2,

www.manaraa.com

3-58

The ALL option copies the definitions of all elements subsumed by
da-name. The TO option allows, for example, a sub-set of the
definitions of the item schemas in a group to be used. The included
elements must be consecutive.

An existing auxiliary definition can be replaced by using REPLACE
instead of ADD in the first statement above. One or more named
definitions or all those associated with a given file can removed
by REMOVE. Version and condition information in an existing
definition can be changed by MODIFY.

3.11 Sample data definitions

This section contains a definition, according to the requirements of
each system, of the simple data structure shown below. This sample
is intended only to give an impression of the basic da,a definition,
and not to exemplify all or even most system features. Also, for
various reasons, the structures as defined for the different systems
are not precisely the same.

CATXAMUTION

ORGCODI

LITICOM7.
1

AIRLISAL

REPORT° SUbORG

I

TZAR

1227CODE l sex

DA!

Figure 3-3
Sample data structure

206

203

SE

1
SULCODE I r SEXIIS

www.manaraa.com

3-59

Element Name Type Level

ORGANIZATION entry

Organization code ORGCODE 4 digits principal item
(entry identifier)

Job JOB repeating group

Job code JOLCODE 4 digits item (group sequencer)

Authorized quantity AUTHQUAN 4 digits item
Authorized salary AUTHSAL 8 digits item

Organization name ORGNAME 25 chars. principal item

Higher-level
erg. code REPORT() 4 digits principal item

Sub-organization SUBORG repeating group
(single item)

Sub-organization
code SUBCODE 4 digits item (group sequencer)

Employee PERSON repeating group

Employee number EMPNO 4 digits item (minor group
sequencer)

Employee name EMPNAME 20 chars. item

Birthdate BIRTH non-repeating group

Year YEAR 2 digits item

Month MONTH 2 digits item

Day DAY 2 digits item

Employee job code EMPJCODE 4 digits item (major group
sequencer)

Sex SEX 1 char. item

Level LEVEL 4 char. item

Skills SKILLS repeating group

Skill code SKILCODE 4 digits item (group
sequencer)

Years in skill SKLYRS 2 digits item

Salary SALARY 8 digits item

Budget BUDGET 8 digits principal item

207

204

www.manaraa.com

3-60

GIS

DDT
FILE:NAME = ORGDATA

FLD:NAME = ORGCODE, UNITS = PACD, LENGTH = 2
EDIT:TYPSPC = RNGE, ERRORD = E, CONVA = PACD, LGTHA = 2,
EEDVAL = 2000, 2999

FLD:NAME = ORGNAME, UNITS = EBCD, JUST = L, LENGTH = 25
FLD:NAME = REPORTO, UNITS = PACD, LENGTH = 2, HEADER = REPORTS TO,

EDIT:TYPSPC = RNGE, ERRORD = E, CONVA = PACD, LGTHA = 2,
EEDVAL = 2000, 2999

FLn:NAME = BUDGET, UNITS = PACD, LENGTH = 4
FLD:NAME = NOJOBS, UNITS = PACD, LENGTH = 1
FLD:NAME = NOSUIORG, UNITS = PACD, LENGTH = 1
FLD:NAME = NOPERSON, UNITS = PACD, LENGTH = 1
SEGM:NAME = ORG, LEVEL = 0, UNIND = Y,

SORT = ORGCODE, A

FLD:NAME = JOBCODE, UNITS = PACD, LENGTH =
FLD:NAME AUTHQUAN, UNITS = PACD, LENGTH = 2,

HEADER = AUTH. QUANT.
FLD:NAME = AUTHSAL, UNITS = FLPT, LENGTH = 4, HEADER = AUTH. SAL.
SEGM:NAME = JOB, LEVEL = 1, OPTION = CNT, OPFFNM. = NOJOBS,

UNIND = Y, SORT = JOBCODE, A

FLD:NAME = SUBCODE, UNITS = PACD, LENGTH 2

SEGM:NAME = SUBORG, LEVEL = 1, OPTION = Ur, OPTFNM = NOSUBORG,
UNIND = Y, SORT = SUBCODE, A

FLD:NAME = EMPNO, UNITS = PACD, LENGTH = 3
FLD:NAME = EMPNAME, UNITS = EBCD, JUST = L, LENGTH = 20
FLD:NAME = SEX, UNITS = EBCD, JUST = L, LENGTH = 1

EDIT:TYPSPC = LKUP, ERRORD = E, CONVA = EBCD, LENGTH = 1,
EEDVAL = M, F

FLD:NAME = EMPJCODE, UNITS = PACD, LENGTH = 2
FLD:NAME = LEVEL, UNITS = EBCD, JUST = L, LENGTH = 4,

EDIT:TYPSPC = PICT, ERRORD = E, LGTHA = 4, EEDVAL = ZZZZ
FLD:AAME = SALARY, UNITS = FLPT, LENGTH = 4, QSEC = 102, USEC = 57
FLD:NAME = BIRTH, UNITS = EBCD, JUST = L, LENGTH = 6

RDFN MONTH, 2, DAY, 2, YEAR, 2
FLD:NAME = SKILL1, UNITS = PACD, LENGTH = 2
FLD:NAME = SKLYRS1, UNITS = PACD, LENGTH = 1
FLD:NAME = SKILL2, UNITS = PACD, LENGTH = 2
FLD:NAME = SKLYRS2, UNITS = PACD, LENGTH = 1
SEGM:NAME = PERSON LEVEL = 1, OPTION = CNT,

OPTFNM = NOPERSON, SORT = EMPJCODE, A, EMPNO, A
END

208

9,05

www.manaraa.com

KUM
tivnu IIIMAGFAILNT srsitne

'oxlip/Ay-A I FM NAME ITT21

I 1 '10

FILE Kara. DELIrer avow.,
cLp_e

11

)(;

FILE DEFINITION

CHARACTERISTIC. OF FILE

RECORD
FORMAT RE CORD RIDE

71 73

1.10C3005
PER 'DOCK SUFFER BIM

le
informatics inc. 8

0
PAGE _OF -

FILE NAME

1 S

. I
9 10

L.90.e.a.c.,ac
11

to'

E IN

.1,

-I

5

.. . :.zrii
.T. Z

.

3t4

.

g

..

OUTPUT

s7

r 1-

_,

; 1 'INPuT

E

6e.,/.4r.i I

L chogP,f4i,/y.E. 1/

I
/3;

/ _..2.

..ZSC

..ZP
,

,,,,,,,,,,,
4.. ...1-.0ZE.p.a.en

1011.1litirMICIM / Ma IMIMINIM, .-rs
--- 1-,0 ,,a..acix_ I t r ,3. 4E mw . .,___, A_A a _1 t _1 a _L i r_

J_ _L 1 I. AVArl(211:751 _LA I ,3.1 __LIP '1 I

mstrwiwraorm min ANIMISM ...__-_._.
L 0 o A MI IIIM SIIIMIESIMMIMII

_1 _A_ __.13111111111111111111111111111111

MIIMIIIIIIME c 14, C 111g1IMMICEMIN MUM=
MIIIIIIIMPUNIMMINMEMMENWITMIMMOMIIIIIIII

. . ,: ,.., EMISSIMMIMINIMMIMM i
.MEv , . firEMMMIMIUMIMON ,..e,

.4 MM.-NN IMPTIMMISIMIIMINIIIIMIIMIMYAIIMMOIMMINI
i. IMMEMINIMMIIIMINIMMIMMISSIIIIMONOMII

IIIMMIMMISMAIMIIMIMIN
111.1111.1111M, 1 : -. ,._ =PI I .111011111111161111 wwww

=. 1_ , a_a_ . ___. . _L_

L 6 027INMI: I ItIr: Nit 3 AN MOM=
moommemmewrininnollINWENIGIIIIIIIIIINE1111.1.111111111111
IMMIIIMPg 4. IWEE -, M1r111111INIMMMIIIIMMIMMIMIIIIMI

Le'Exl, 41) Mr ,___ PI MI MI
IMIIIIMIniri EA' . IM _ MI IL IIMIMNIIMIIO g75i'77'-ftefklainn
11.11.111EX Er P e , A CEIMMIMMIIMMISIIIMMISMISMII

* 41.11 MEIN
L , i, 4 A>

11

IIMMISMIEWI, .P57MMIIIIannimmw Insuusammv v
I sito Mr Illr MI __ . __ _, ,

2,4,. el WW1 1.111.11. 'womenomitimrin .mgmmuunou
, IMMINIMMINELBILINIIMIMIS

MININNEMININIMMINUMMIMMIIMMIMMIMMO
MIMISSIMEM7723,1 1111111MMIIIIIMMIMIMMIIIII
IIIIMMISHIMIIMMIMMOOMMEIRIMMIIMBIBMIOMMII
SOMMINCIIIIIMIiMMIIM11111.1111111 11111111.1111111MIIMMONIMWM

t .1m4 IIWAVNT IM notaishc oinc LINED 911111 TAMS LOOKUP OFICIAL FLAMM OtIL7

209

9nri

73

DECK ID.

www.manaraa.com

NIPS/FFS

STRUCTURE

CLASSIFICATION

ORGDATA

TABLE JOBSKIL
TABLE ORG

NOTE ORGANIZATION
FIELD ORGCODE 4

FIELD REPORTO 4

FIELD BUDGET 7

3-62

OUTPUT 4

OUTPUT 4

'UNCLASSIFIED'

20 NUMER
20 ALPHA

IS NIPS/FFS FIXED SET.

C ALPHA . ORG.

X NUMER .
X NUMER .

NOTE JOB GROUP IS NIPS/FFS PERIODIC SET 1.

FIELD JOBCODE 4 Cl NUMER. JOBSKIL.
FIELD AUTHOUAN 2 1 NUMER.
FIELD AUTHSAL 6 1 NUMER.

NOTE SUBORG GROUP IS NIPS/FFS PERIODIC SET 2.

FIELD SUBCODE 4 C2 NUMER. ORG.

kLPHA.

ALPHA.

NOTE PERSON GROUP IS NIPS/FFS PERIODIC SET 3.

FIELD EMPJCODE 4 C3 NUMER. JOBSKIL.
FIELD EMPNO 5 C3 NUMER.
FIELD EMPLAST 22 3 ALPHA.
FIELD EMPFIRS 3 3 ALPHA.
GROUP EMPNAME EMPLAST EMPFIRS. ALPHA.
FIELD SEX 1 3 ALPHA.
FIELD YEAR 2 3 NUMER.
FIELD MONTH 2 3 NUMER.
FIELD DAY 2 3 NUMER.
GROUP BIRTH BYEAR, BMONTH, BDAY.
FIELD LEVEL 4 3 ALPHA. USE TO SHOW ALPHABETIC SELECTION'
FIELD SALARY 5 3 NUMER.
FIELD SKILL1 4 3 NUMER.
FIELD SKLYRS1 2 3 NUMER.
FIELD SKILL2 4 3 NUMER.
FIELD SKLYRS2 2 3 NUMER.

207
210

www.manaraa.com

3-63

TDMS

DATA BASE NAME IS: ORGDATA
TERMINATOR IS: END

1 ORGCODE (NUMBER) VALUES ARE 2000 . . . 2999
2 ORGNAME (NAME)
3 REPORTO (NUMBER) VALUES ARE 2000 . . 2999
4 BUDGET (NUMBER)
5 JOB (RG)

6 JOBCODE (NUMBER IN 5) FORMAT IS 9999
7 AUTHQUAN (NUMBER IN 5)
8 AUTHSAL (NUMBER IN 5)

9 SUBORG (RG)
10 SUBCODE (NAME IN 9) VALUES ARE 2000 . . . 2999

11 PERSON (RG)
12 EMPNO (NUMBER IN 11) FORMAT IS 09999
13 EMPNAME (NAME IN 11)
14 SEX (NAME IN 11) VALUES ARE M, F
15 EMPJCODE (NAME IN 11) FORMAT IS 9999
13 LEVEL (NAME IN 11) FORMAT IS LLLL
17 SALARY (NUMBER IN 11)
18 BIRTP (NAME IN 11) FORMAT IS 99</>99</>99

1.81 YEAR (1...2 IN 18)
182 MONTH (4...5 IN 18)
183 DAY (R1...2 IN 18)

19 SKILLS (RG IN 11)
20 SKILL (NAME IN 19) FORMAT IS 9999
21 SKLYRS (NUMBER IN 19)

END

2 Otg
211

www.manaraa.com

3-64

UL/1

ORGDATA

ORGCODE
ORGNAME

ESTABLISH

IDENTIFICATION

#1 N

#2 A
#3 N REPORTO REPORTS TO
#4 N BUDGET
#5 N JOBCODE JOB CODE
#6 N AUTHQUAN AUTH.QUANT.
#7 N AUTHSAL AUTH.SAL.

#8 N SUBCODE SUBORG. CODE
#9 N EMPNO
#10 A EMPNAME EMPLOYEE NAME
#11 C SEX
#12 N EMPJCODE EMPL. JOB CODE
#13 A LEVEL
#14 N SALARY
#15 A MONTH
#16 A DAY
#17 A YEAR
#18 N SKILL
#19 N SKLYRS

STRUCTURE

JOBS (EMPJCODE AUTHQUAN AUTHSAL) REPEATS
SUBCODE REPEATS
PERSONS (NUMBER EMPNAME SEX EMPJCODE LEVEL SALARY

MONTH DAY YEAR SKILL SKLYRS) REPEATS
BIRTH (MONTH DAY YEAR)
SKILLGR (SKILL SKLYRS)
SKILLGR REPEATS UNDER PERSONS

CODES
SEX M MALE F FEMALE

209:
212

www.manaraa.com

3-65

COBOL

DATA DIVISION

FILE SECTION

FD SDCDATA

01 ORG
02 ORGCODE ; PICTURE IS 9999
02 ORGNAME ; PICTURE IS A(25)
02 REPORTO ; PICTURE IS 9999
02 BUDGET ; PICTURE IS Z(8); USAGE IS COMPUTATIONAL-1
02 JOB ; OCCURS 1 TO 50 TIMES ASCENDING KEY IS JOBCODE

03 JOBCODE ; PICTURE IS 9999
03 AUTHQUAN ; PICTURE IS 99; USAGE IS COMPUTATIONAL
03 AUTHSAL ; PIC ZZZZZZ ; USAGE-COMP-1

02 SUBORG ; OCCURS 0 TO 20 TIMES ASCENDING KEY IS SUBCODE
03 SUBCODE ; PIC 9999

02 PERSON ; OCCURS 1 TO 999 TIMES ASCENDING KEYS ARE
EMPJCODE, EMPNO

03 EMPNO ; PIC 29999
03 EMPNAME ; PIC A(20)
03 SEX ; PIC A
03 EMPJCODE ; PIC 9999
03 LEVEL ; PIC AAAA
03 SALARY ; PIC ZZZZZ ; USAGE COMP-1
03 BIRTH

04 MONTH ; PIC 99
04 DAY ; PIC 99
04 YEAR ; PIC 99

03 SKILLS ; OCCURS 1 TO 9 TIMES ASCENDING KEY IS SKILCODE
04 SKILCODE ; PIC 9999
04 SKLYRS ; PIC 99

210)
213

www.manaraa.com

3-66

DBTG

SCHEMA NAME IS ORGDATA

AREA NAME IS ORGPART

RECORD NAME IS ORG

PRIVACY LOCK IS SESAME

01 ORGCODE PICTURE IS "9(4)"
01 ORGNAME TYPE IS CHARACTER 25
01 REPORTO PICTURE IS "9999"
01 BUDGET TYPE DECIMAL FLOAT ; IS ACTUAL RESULT OF SALSUM

ON MEMBERS OF PERSONS
01 NOSUBORG TYPE BINARY
01 SUBORG OCCURS NOSUBORG TIMES

02 SUBCODE PICTURE "9999"
RECORD NAME IS JOB

01 JOBCODE PICTURE "9999"
01 AUTHQUAN PICTURE "99"
01 AUTHSAL TYPE FLOAT

RECORD NAME IS PERSON
01 EMPNO PICTURE "9(5)"
01 EMPNAME TYPE CHARACTER 20
01 SEX PICTURE "A"
01 EMPJCODE PICTURE "9999"
01 LEVEL PICTURE "X(4)"
01 SALARY PICTURE "9(5)V99" ; PRIVACY LOCK FOR GET IS

PROCEDURE AUTHENT
01 BIRTH

02 MONTH PICTURE "99"
02 DAY PICTURE "99"
02 YEAR PICTURE "99"

01 NOSKILLS TYPE BINARY
01 SKILLS OCCURS NOSKILLS TIMES

02 SKILCODE PICTURE "9999"
02 SKLYRS PICTURE "99"

SET NAME IS JOBS; ORDER IS SORTED
OWNER IS ORG
MEMBER IS JOB OPTIONAL AUTOMATIC; ASCENDING KEY IS
JOBCODE DUPLICATES NOT ALLOWED

SET NAME IS PERSONS; ORDER IS SORTED
OWNER IS ORG
MEMBER IS PERSON OPTIONAL AUTOMATIC ; ASCENDING KEY IS
EMPJCODE,EMPNO DUPLICATES NOT ALLOWED

211
214

www.manaraa.com

3-67

IDS

DATA DIVISION
IDS SECTION
MD ORGDATA

01 CPC TYPE IS 100 ; AUTHORITY 2192

02 ORGCODE ; PIC 9999
02 ORGNAME ; PIC A(25)
02 REPORTO ; PIC 9999
02 BUDGET ; PIC Z(8)
02 SUBORG OCCURS 0 TO 20 TIMES ASCENDING KEY IS SUBCODE

03 SUBCODE ; PIC 9999

98 CALC CHAIN DETAIL RANDOMIZE ON ORGCODE
98 JOBS CHAIN MASTER CHAIN-ORDER IS SORTED
98 PERSONS CHAIN MASTER CHAIN-ORDER IS SORTED

01 JOB TYPE IS 101

02 JOBCODE ; PIC 9999
02 AUTHQUAN ; PIC 99
02 AUTHSAL ; PIC Z(6)

98 JOBS CHAIN DETAIL
SELECT CURRENT MASTER
ASCENDING KEY IS JOBCODE
DUPLICATES NOT ALLOWED

01 PERSON TYPE IS 102

02 EMPNO ; PIC 29999
02 EMPNAME ; PIC A(20)
02 SEX ; PIC A
02 EMPJCODE ; PIC 9999
02 LEVEL ; PIC AAAA
02 SALARY ; PIC ZZZZZ
02 BIRTH

03 MONTH ; PIC 99
03 DAY ; PIC 99
03 YEAR ; PIC 99

02 SKILLS OCCURS 1 TO 9 TIMES
03 SKILCODE ; PIC 9999
03 SKLYRS ; PIC 99

98 PERSONS GRAIN DETAIL
SELECT CURRENT MASTER
ASCENDING KEY IS EMPJCODE,EMPNO
DUPLICATES NOT ALLOWED

212
215

www.manaraa.com

3-68

IMS

DBD NAME = ORGDATA

SEGM NAME = ORG, BYTES = 38, START = 1
FIELD NAME = (ORGCODE SEQ, U), BYTES = 2, TYPE = P
FIELD NAME = ORGNAME, BYTES = 25, START = 3, TYPE = C
FIELD NAME = REPORTO, BYTES = 2, START = 28, TYPE = P
FIELD NAME = BUDGET, BYTES = 4, START = 30, TYPE = P

SEGM NAME = JOB, BYTES = 8, FREQ = 31, PARENT = ORG
FIELD NAME = (JOBCODE, SEQ, TT), BYTES = 2, TYPE = P

SEGM NAME = SUBORG, BYTES = 2, PARENT = ORG
FIELD NAME = (SUBCODE, SEQ, U), BYTES = 2, TYPE = P

SEGM NAME = PERSON, BYTES = 40, PARENT = ORG
FIELD NAME = (EMPJCODE, SEQ, M), BYTES = 2, TYPE = P
FIELD NAME = (EMPNO, SEQ, U), BYTES = 3, TYPE = P

SEGM NAME = SKILLS, BYTES = 3, PARENT = PERSON
FIELD NAME = (SKILCODE, SEQ, U), BYTES = 2, TYPE = P

DBDGEN

FINISH

END

213
216

www.manaraa.com

3-69

SC-1

ADD AFTER DATAPOOL

01 ORGFILE F ORDERED INCR ORGCODE ; ;

02 ORGREC R ;

03 ORGCODE D F LENGTH 4 ;

03 ORGNAME A V LENGTH 25 ;

03 REPORTO D FO LENGTH 4 ;

03 BUDGET E LENGTH S ;

03 JOBS F ORDERED INCR JOBCODE ;
04 JOBREC R ;

05 JOBCODE D F LENGTH 4 ;

05 AUTHQUAN D F LENGTH 4 ;

05 AUTHSAL E LENGTH S ;

03 SUBORGS F ORDERED INCR SUBCODE ;

04 SUBORGREC R ;

05 SUBCODE D F LENGTH 4 ;

03 PERSONS F ORDERED INCR EMPJCODE,EMPNO ;

04 PERSREC R ;

05 EMPNO D F LENGTH 6 ;

05 EMPNAME A V LENGTH 20 ;

05 SEX A F LENGTH 1 ;

05 EMPJCODE D F LENGTH 4 ;

05 LEVEL A F LENGTH 4 ;

05 SALARY E LENGTH S SRL 02 UAC 150 UMC 124

05 BIRTH S ;

5 MONTH D F LENGTH 2 ;

DAY D F LENGTH 2 ;

06 YEAR D F LENGTH 2 ;

05 KULLS F ORDERED INCR SKILCODE ;
06 SKILREC R ;

07 SKILCODE D F LENGTH 4 ;

07 SKLYRS D F LENGTH 2 ;.

EOJS

214

217

www.manaraa.com

4. INTERROGATION FUNCTION

Interrogation is the selection of data from a data base, extracting
(namely copying) the selected data, possibly for intermediate
processing such as sorting or summarization and formatting the
results either into readable reports or into a machine readable
form for further processing.

For the interrogation function, information is usually entered
initially to identify the part of the data base on which the
interrogation is to be performed. This is followed by a statement
of the selection criterion (the premise) and a statement of the
extraction (the action). Identifying the part rf the data base
could in effect be considered part of the selection criterion,
although it is normally given separate treatment.

In a self-contained system, an interrogation is a premise action
grouping where both act on all or part of a file or, if inter-file
relationships are possible, on a data base. Various complexities
of premise action grouping are possible with the simplest case
having one premise and one action. These are separated in this
chapter into conditional expressions and extraction, although in
some systems it is difficult to make such a clear separation.

In the host language systems, the premise usually acts on a single
stored entry or on some part thereof. The resulting action may
initiate a data transfer from one level of memory to another, avid
an unlimited complexity of premise action groupings is permitted in
the host language.

The most significant difference between self-contained and host
language systems is in the handling of premise action groupings.
In the case of self-contained systems, the user specifies the
information he requires while the process by which it is obtained
is built into the system. In a host language system, the user
usually programs (in the conventional sense) the series of premises
and actions which define the process by which the information required
is to be generated. In this chapter the functions described are
those normally appropriate to a self-contained system. However, in
some host language systems, facilities may be provided (in addition
to those already in the host language) for expressing conditional
expressions on the data in an entry. These may be of the same
complexity as in a self-contained system. In such cases the
capability is covered in this chapter under conditional expressions.

221

213

www.manaraa.com

4-2

GIS

Interrogation is specified using a QUERY sub-procedure which must
be part of a procedural task specification. The -aading of files
and the selection of entries is specified using a LOCATE-EXHAUST
block in which the selection of entries is embedded. A further
similar block of statements can be nested within the principal
block to select repeating group instances within the entry. Inside
any such block, the user must specify whether data is to be ex-
tracted (that is, printed) when found or whether it is to be stored
in a hold file for possible sorting or other further processing
before finally being printed.

Most statement types may be labelled and a transfer (or GO TO)
statement is provided. Up to 99 temporary numeric items and up to
99 string items may be used in a procedural task specification for
storing data values which are needed in the course of executing
the procedure. Also up to 99 special TALLY items may be defined
for the purpose of developing counts.

Interrogation must therefore be programmed and the user has the
ability to define his own processing algorithm. The QUERY sub-
pl.ocedure may access up to 16 temporary work files, called hold.
files, and system files.

MARK IV

Interrogation is performed according to built-in search processing
algoethms, the choice of which depends on file level storage
structure. Two levels of user specifications are provided, each
using its own forms printed for input preparation. For simple
interrogations a form is used which allows specification of the
conditional expressions on the data in one file only and uses a
foilliat for the content of the output which is largely system
defined, although the user may exercise some control. Sorting may
be specified using this form.

For more complex interrogations, the Processing and Record Selection
form must be used together with up to three associated forms which
allow specification of more elaborate report formats and also the
interrogation of a set of coordinated files. As part of the selection
definition, arithmetic operations may be performed on numeric data
and logical operations may be performed on any type of data item.

Temporary items ..lay be defined to facilitate computation of numeric
quantities, for storing constants and for communication between
successive entries during processing.

A link to subroutines written in procedural languages such as COBOL
and FORTRAN is provided. This provides capability for specifying
processing which cannot-, be handled by the system within the frame-
work of the built-in processing algorithm.

222

216

www.manaraa.com

4 -.3

NIES/FFS

Three different system facilities may be used for interrogation.
The most complete extraction capabilities are provided in the batch
mode by the Retrieval and Sort Processor (RASP). It produces a
Qualifying Data File (OF) and a Qualifying Record Table (QAT) as
output.

A second facility, which also operates in the batch mode, is called
the Output Processor (OP). It can extract data from data files or
from the output of RASP. The extracted data can be written on disc,
magnetic tape, punched in cards, or listed on a printer. A simple
form of report is provided in the default options of the'r=port
specifying statements, that can also be used to specify both content
and format in detail.

The Quick Inquiry Processor (QUIP) is the third facility. It operates
in either the batch or on-line mode. As with OP, data can be extracted
from either data files, or from RASP output. In the batch mode, data
may be extracted from either sequential or indexed sequential files.
In the on-line mode, data can only be extractEq prom indexed sequential
files. The extraction may be performed either by initiating execution
of a stored query or by entering a QUIP query at the terminal. Output
from QUIP is formatted either as one page of infinite length suitable
for terminal display or as pages with a specified number of lines
suitable for listing.

When RASP is used on one file, mul'iple IF statements may be used
to create multiple answer sets. The RASP sort statement can then
generate pointers in the QRT to sort each answer set on data items
and literals spec..Cied independently for each answer set by the user.
When data is extracted from multiple files (ap to 10), only one
retrieval may be processed at a time. The data extracted from the
multiple files is merged by sorting after it has been extracted.
The merged file can then be printed by using OP.

Arithmetic capabilities are available through the use of sut'outines
that can be written in COBOL, FORTRAN, or S/360 Assembler Language
and in the report summarizing operators of OP and QUIP such as TOTAL,
COUNT, COMPUTE and VARIANCE. For OP and QUIP queries specified at a
terminal, data may be extracted from only one file at a time.

.TOMS

Interrogation is designed fcr on-line interactive and also for off-
line use. In both cases the processing algorithm is built into
the system and uses the set of secondary indexes which are automatically
created and maintained for all data items in the entry.

223

217

www.manaraa.com

4-4

Two levels of interrogation ar?. provided. The simpler one, called
QUERY, can only be used on-line. The other, called COMPOSE, may be
used either on-line or off-line. COMPOSE includes facilities for
sorting the output data, and this is performed by a built-in sort
on index values.

As part of the QUERY facility the user may have the file schema
displayed at the terminal and may also browse through his file
gradually convergingon the information he is seeking. The output
generated by QUERY is in a format defined by the system.

COMPOSE has full facilities for formatting a report. It is also
possible to prepare a report format interactively from the terminal.

Facilities for embedding arithmetic computation are provided but
the language is completely non-procedural with no statement labels.
A range of trigonometric and statistical functions may be invoked.

ut,/a.

Interrogation is specified in the interrogation division using a
facility called the criterion language to specify a conditional
expression and one called the publish section to specify the data
to be extracted for inclusion in reports or sub-files.

The publish section has two levels, one in which the format of the
content data in the report or sub-file is provided by the system and
the other in which the report or sub-file has the format of the
content data specified in detail by the user.

Processing algorithms are provided by the system. When a set cf
interrogations is entered, then the file (or coordinated set of
files) is searched sequentially.

Sorting is performed on items or on computationally derived
quantities selected from the entry as soon as it is determined that
the entry satisfies the selection criterion.

No statement labelling or transfer statements are provided, and
arithmetic computation may be specified using a component called
the procedure language. Procedures may be invoked in the conditional
expression and in the publish section.

COBOL

Interrogation is specified in a use of the Procedure Division. The
reading of files and the selection of entries is specified using
READ file statements and IF statements. Since COBOL is a procedural
language, the file processing algorithm and the extraction specification
must be programmed as a mix of premise and action statements. If the
data extracted is to be included in a report, then the report writer
facility may be used.

224

218

www.manaraa.com

4-5

If the entries to be selected are also to be sorted, then the SORT
facility may be used. The user mast use temporary work files where
necessary and is also responsible for management of his own working
areas within high speed memory.

SC-1

Interrogation is specified by using Report Data Compiler (RDC-1)
statements which indicate the de.' items to be used in a report
and the format of the report. A group of statements, called a
Report Description, defines the formatting of the items from one
entry oza repeating group (and any manipulation of those items).
Within each Report Description the statements are usually divided
into a non-procedural section, which defines such things as headers,
margins, and page length, and a procedural section which generates
the detail lines for each entry. The procedural statements may be
labeled and a control transfer statement is provided. Procedural
statements within a Report Description may also call other Report
Descriptions which format or manipulate data from other repeating
groups.

Report Description programs are generated by the RDC Page Compiler
from the user-written statements. A table, called a "page catalog",
contains the compiled Report Description programs. The RDC Report
Generator retrieves the Report Description stored in the page catalog
by the compiler to generate a specified report.

Temporary items may be used for arithmetic computation including
summation. P. link to user-specified subroutines in FORTRAN, COBOL,
or Assembler is also provided for more complex computations.

The file processing algorithm is automatically determined by the
specifications of repeating groups used in the Report Description
and by the statements used to call other Report Descriptions.

4.1 Characteristics of premise action relationship

The permitted premise action mix, and the nature of the actions
permitted, are together a measure of the procedurality of a system.
The premise action mix is the combination of premises (or conditional
statements) and action statements allowed in a use of a function.
The premise may be ouite complex in itself and is covered in the
discussion on conditional expressions (see 4.3). The actions may be
of varying types and complexity depending on the system.

If a complete mix is permitted and the actions permitted include
moves, data transfers, assignment statements and jump statements,
then the language is essentially a procedural language such as COBOL.
If the nix is restricted and the actions permitted are high level
ones, which imply the processing of a whole file or even of a data
base, then the language is less procedural.

225

219-

www.manaraa.com

II -6

GIS

Most statements types may be labeled and a transfer statement is
provided allowing a fairly complete premise action mix. The inter-
rogation function must be specified using a special set of statements
called a QUERY sub-procedure within which other specific statements
must be used to define the processing algorithm.

MARK IV

The premise action mix in the interrogation function is limited by
the form chosen. A more complex mix is possible with the Processing
and Record Selection form than with the Information Request form.

NipsIFFS

The premise action mix in the interrogation function is built-in
for the part of the functions which causes either limited or complete
passing of the interrogated file or files. A more complex mix is
permitted for sorting the file of entries which satisfy the selection
criteria. None of the three facilities use statement labeling or
transfer statements.

ZOMS

The premise action mix in the whole interrogation function is limited
by a built-in processing algorithm.

u-L/i

The premise action mix on the whole interrogation function is limited
on the top level by the built-in processing algorithms. If computa-
tional procedures are invoked, a more complex mix is allowed within
the procedure definition, but no statement labels or transfer state-
ments are provided.

COBOL

A set of statements comprise a section of a paragraph in the Procedure
Division. Either of these may be given a procedure name and transfer
statements contain a procedure name. Conditional statements have
both a true and a false path. With these facilities, the premise
action mix may be of unlimited complexity.

SC-1

The premise action mix is restricted by the file processing algorithm to
the processing of a whole file, but a complex premise action mix
is permitted for each entry in the file since the statements within
each report description are procedural.

226

220'

www.manaraa.com

4-7

4.1.1 Procedural language actions

Procedural language actions are covered under Programmer Facilities
(see Chapter 7), They include Statements to open and close files,

cause transfers between levels of memory, move data from one
working area in high speed memory to another and to equate a
numeric data item to an arithmetic function of other numeric items.
Statement labeling is provided and associated statements to transfer
execu:ion control. In addition looping statements are provided to
cause an action or set of actions to be repeated as long as some
condition holds.

The separation between procedural actions and non-procedural actions
is an ill-defined one. In the early days of higher level languages
such as FORTRAN, an assignment statement such as

X= X + A * B/C

was considered non-procedural since the programmer does not have to
program the machine level instructions required to replace the
variable X by a new value computed by executing the above statement
once. On this: level of the computational assignment statement, non-
procedurality rapidly went as far as possible. However for the action
statements which control the movement of data between levels of
memory, the trend is towards more complex higher level statements.
For the purpose of this section of the report, procedural language
actions are identified as those which affect the access to, or a
movement of, levels of data on or below that of an entry. Statements
to open and close files are an exception to this, and are regarded as
procedural. Statements which cause the processing of, or a set of
accesses to, a whole file are regarded as non-procedural and will
normally subsume the actions of file open and close.

GIS

No explicit statements to open and close files are provided nor to
initiate specific transfers of data between levels of memory. How-
ever statements are provided to build up temporary files and to store
data in temporary data areas in high speed memory.

MARK IV

No explicit statements are provided to transfer or move data across
levels of memory or within a level of memory. Temporary variables
in high speed memory may be defined. Arithmetic functions may be
specified.

NIPS/FFS

RASP and the Output Processor, provide for temporary storage. Computa-
tional statements, subroutines !),nd functions supply arithmetic capability.

227

221

www.manaraa.com

4-8

TDMS

No explicit statements are provided to transfer or move data across
levels of memory or within a level of memory. Temporary variabL.s
in high speed memory may be defined- Arithmetic functions may "L-2
specified.

u-L/i

No explicit statements are provided to transfer or move data across
levels of memory or within a level of memory. Temporary variables
in high speed memory may be defined. Arithmetic functions may be
specified.

COBOL

COBOL has an extensive set of action statements for all types of
data transfer and for moving data within high speed memory.
Arithmetic expressions may be embedded in COMPUTE statements to
facilitate computation.

SC -1

No explicit file processing statements are provided. Statements
may transfer data to temporary storage areas in memory and arithmetic
computations are permitted.

4.1.2 Non-procedural language actions

The action statements provided in the non-procedural language of
the self-contained systems are different from those embedded In host
language systems. The action statements of the procedural language
(see 4.1.1) are usually not provided, except for the arithmetic
computation statements.

Since statements to control data transfer between levels of memory
and to control movement within high speed memory are not provided,
such actions are normally built into the self-contained system in
the form of an implicit processing algorithm which takes over user
control of data movement.

The two major processing algorithms are for interrogation described
in this chapter and update (see Chapter 5). In both of these, the
concepts of premise and action hold, although the premise is usually
similar or even identical in both cases. Action statements in the
interrogation function are directly concerned with generating and
formatting reports for output. Action statements in the update
function control the changes in value content to be made at some level
in the data base.

The interrogation function is considered relevant only to self-
contained systems and to host language systems which embody some
capability for non-procedural interrogation or non-procedural report
generatioh.

228

222

www.manaraa.com

4-9

GIS

Action statements are LIST and HOLD which are normally used in a
LOCATE - EXHAUST block. This block causes a looping through a set
of entries or groups. These may be either actions such as LIST
and HOLD, or else conditional statements. LIST causes the ex-
traction of the item values whose names are included in LIST
statement. HOLD similarly causes the build up of a temporary file.

MARK IV

The action statements are implied by the particular form being used.
When the data on the form is punched, certain columns contain par-
ameter values indicating actions to be performed.

NIPS /FFS

The actions in RASP are used to sort the file (or files) of selected
entries. Generating reports must then be done using the separate
OP facility, which gives the user control over report content
(including possible further selection) and also over format. QUIP
actions include statements for listing, printing and displaying of
selected data depending on output medium.

T.DMS

In system formatted reports, the PRINT statement with its names
causes data to be included in the report. In the user formatted
reports, which use COMPOSE, lower level actions to permit for-
matting the report are provided.

UL /l

The actions in the interrogation division are always prefaced by

PUBLISH
iREPORT reportname

[COBOL] FILE filename

ad there may be several similar PUBLISH specifications for any one
selection criterion. In either case, this is followed by format
specifications for the report or file.

COBOL

COBOL as no non - procedural language actions in the sense of this
report. All looping must be programmed and actions on a file or
set of files built up as a set of actions on the individual entries.
However, the sort verb and the report writer facility are optional
non-procedural actions available to the programmer from within the
language.

229

223

www.manaraa.com

SC-1

Action statements are used within a Report Description to call
other Report Descriptions and a PRINT command is used on a control
card at execution time to specify the main (calling) Report
Description to be used. PRINT statements within each Report
Description specify which items appear in the output report.

1.2 Identifying applicability of interrogation

The first specification for the interrogation function defines the
level of applicability of a single interrogation, for instance whether
it may operate on a single named file, a set of files, a single
partition of one file or on a whole data base. If it operates on
a set of files, the set may be coordinated, that is similarly
sequenced. Otherwise the set is uncoordinated. In either case the
size of the set may vary.

GIS

The set of files to be interrogated is listed in the QUERY statement
which identifies the start of a QUERY sub-procedure. Up to 16 files
may be interrogated in one specification. They need not be similarly
sequenced.

MARK IV

The name of tie file or files to be interrogated is entered on the Run
Control form which is used in conjunction with both the Information
Request form and the Processing and Record Selection form. The latter
form must be used if a set of coordinated files is being interrogated.
In this case the master and the associated files are specified on the
run control forms. Using the facility to interrogate a set of co-
ordinated files, there must be one master file and may be up to nine
slaves.

1VIPS /FFS

With all three interrogation facilities the file or files to be
processed may be identified by a FILE statement. In the terminal
facility QUIP, the format of the FILE statement provides for iden-
tification of the batch query used to extract the data and the report
format to be used to print it. In QUIP, the QUERY statement may also
be used to identify the file from which data is to be extracted.

In both RASP and QUIP, once the file is identified, different formats
of the LIMIT statement may be used to confine the data extraction to
stated ranges of entry identifier values. In QUIP, the FIND statement
can be used to state the maximum number of entries to be extracted.
In RASP, the SELECT statement can be used to reduce the size of the
entries extracted by specifying only specific repeating groups or
instances of repeating groups that will be included in the extracted
entries. If SELECT is not used the entire entry is extracted and the
instances of repeating groups that satisfy the entry level conditional
expression are flagged.

230

224

www.manaraa.com

4-11

TDMS

The name of the file to be interrogated is entered in response
to the system request

ENTER DATA BASE FILE ID:

which precedes the specification of the interrogations. Only one
file may be interrogated in one interrogation specification.

UL/1

The name of the file to be interrogated is included in the
steement.

INTERROGATE filename

which precedes the specification of the interrogation. If a set of
coordinated files is to be interrogated, then they may have one
entry in the file definition data catalogue which identifies them
as a set. The set must have one master file and up to three slave
files.

COBOL

The set of files to be interrogated is identified by the OPEN and
READ statements which are used in programming the file processing
algorithm. There is no limit on the number of files which may be
processed.

SC-1

The name of the filc to be interrogated by a Report Description is
identified in the first statement of the Report Description. One
Report Description may call other Report Descriptions which inter-
rogate other files.

4.3 Conditional expressions

Selection facilities typically permit a complex condition to be
expressed on each instance of an entry, or a group. The condition
on the entry or group consists of a logically connected set of
conditions on one or more data items (usually but not necessarily
on the item value).

GIS

A conditional expression is introduced either by IF or by WHEN.
One may also be used after the extension word ON to provide
selective report formatting when preparing a user specified report.

231

225.

www.manaraa.com

4-12

MARK IV

The form identification for the Information Request form or for
the Processing and Record Selection form identifies the input being
specified as an interrogation and in both forms the condition
expression is built up in specific columns.

NIPS/FFS

A conditional expression is introduced by the word IF in all three
interrogation facilities. There are variations in the allowable
parts of the expression among the three facilities. In RASP, FURTHER
can be used as a replacement for IF or as a connector in an conditional
expression with an implied meaning of AND, if no other connector is
used explicitly. In OP the IF statement may be preceded with the
action verbs OMIT or STOP.

TDMS

A conditional expression is always introduced by the word WHERE.
Conditional expressions are used in both QUERY and in COMPOSE
and the same capabilities are provided in each case.

UL/1

A conditional expression is specified using the criterion language.
As the selection criterion on the entry in the Interrogation Division,
it is introduced by the words RETRIEVAL CRITERION. Within a
computational procedure specified using the procedure language
(see 4.7.4), conditional expressions are preceded by the word IF.

COBOL

A conditional expression is introduced by the word IF.

SC-1

Conditional expressions are preceded by IF for expressions in which
numerical quantities are being compared and ALPHA IF for expressions
in which alphanumeric quantities are being compared. Only simple
conditions are permitted in a conditional expression.

4.3.1 Simple conditions

The smallest indivisible condition is referred to as a simple
condition, which may take various forms depending on the system.
The basic form is a subject, such as an item name, followed by a
predicate. The predicate usually contains two parts, a relational
operator, and a reference quantity. The common case of a simple
condition containing subject, relational operator and reference
quantity is called a relational condition. Some systems allow the

232

22G

www.manaraa.com

14-13

subject or the reference quantity to have several values, but this
is a shorthand way of writing several simple conditions as a single
compound condition. Compound conditions are formed by connecting
together two or more simple conditions (see 4.3.2).

4.3.1.1 Basic relational operators

The basic six relational operators are equals, not equals, greater
than, less than, greater than or equal to, less than or equal to.

PERATOR
i

SYSTEM
EQUALS NOT EQUALS GREATER

THAN
LESS
THAN

?

GIS EQ NE GT LT GE LE

MARK IV EQ NE GT LT GE LE

NIPSIFFS
ALL
options

RASP and
OP batch

EQ
EQUAL(S)
EQUALING

NE GT LT GE LE

AFTER
LATER

BEFORE
EARLIER

GTE LTE

OP batch NEQ NGT NLT NLTE NGTE

QUIP =

TDMS EQ NQ GR LS GQ LQ

/1 EQ NE GT LT GE LE

OBOL EQUAL(S)
NOT =
NOT EQUAL
UNEQUAL

GREATER
EXCEEDS

LESS

SC-1 EQ NE GT LT
<

GE LE

1 In all NIPS/FFS options, the six basic relational operators may bepreceded by NOT to reverse the meaning.

Figure 4-1
Basic relational operators

233

227,-

www.manaraa.com

14-14

4.3.1.2 Permitted form of subject in simple relational conditions

The subject in a relational condition usually identifies a data
item in the data base schema. Most frequently it is an item name,
although there are other possibilities such as the name of a
quantity computed from data in the entry or some other property of
the item named. The subject in the written form of a relational
criterion is uslia1ly written to the left of the relational operator.

GIS

The subject is restricted to the item name. Which instance of the
item name is selected, is determined by the place of relational
conditions within the nest of LOCATE-EXHAUST blocks necessary to
define the processing algorithm.

MARK IV

The subject may be an item name in the entry of the master file or
possibly in any of its coordinated files (up to nine) or in the
transaction file. In addition it may be a temporary work item or
one of the systems flags used to allow the user some control over
the processing algorithm. If the file is being updated and an entry
modified, then the subject may also be an item name in the new file.

NIPS /FF$

All three facilities may use an item name as the subject of an IF
statement. The item name may be qualified with the name of a
conversion table or routine. This causes either a table look up or
a subroutine call to produce the value which corresponds to the
reference quantity to be used in evaluating the condition (see
4.3.1.4). In addition, RASP and OP can both use simple group names,
sub -items and functions. OP may use a RASP generated value passed
to OP in a temporary work item. In addition RASP may use a literal.

TDMS

The subject is restricted to an item name in the entry of the file
being interrogated. As throughout the system, the item number may
be used interchangeably with item name.

u-L/i

The subject may be an item name in any entry type in the master file
or possibly in any of the three coordinated files. In addition it
may be the length of the stored value, or the picture of the item.
If the item is numeric and multiple valued, the subject may be the
arithmetic sum or mean of the set of values. If the item is multiple
valued of any type, the subject may be the number of values, or the
maximum or minimum of the set of values. In addition the subject
may be the name of a computational procedure based on the values of
numeric data items in the entry.

234

228

www.manaraa.com

It-15

COBOL

The subject may be an identifier literal or arithmetic expression.
The term identifier here is used in the COBOL sense and refers to
data item names followed if necessary by the syntactically correct
combination of qualifiers, subscripts, and indices necessary to
make unique reference to a data item.

SC-1

The subject may be the name of an item of the file being interrogated,
or the name of a temporary data item. The name of a temporary storage
area containing the value of an item from another file may also be the

subject of a conditional expression.

1+.3.1.3 Restrictions on the use of relational operators

Sometimes it is meaningful to impose restrictions on the relational
operators (see 4.3.1) permitted with a given subject. These may
depend on the type of the item identified in the subject or in the

form of the subject.

GIS, MARK IV, NIFS/FFS, TMAS, COBOL, SC-1

All permitted subject forms may be used with each of the six basic
relational operators.

UL /l

All permitted subject forms may be used with each of the six basic
relational operators, except PICTURE which is restricted to use

with EQ and NE.

4.3.1.4 Permitted reference quantities in simple relational conditions

In a simple relational condition the subject is compared, on the
basis of the relational operator, with a reference quantity. This

is normally a literal agreeing in type with the subject 7ut it may
be another item identifier or an arithmetic expression.

GIS

The reference quantity must be a string value or string expression
for subjects of type string, or it must be a numeric value or an

arithmetic expression for subjects of type numeric. A string
expression must be either a string value or a string variable.
Two or more string expressions may be concatenated.

MARK IV

The reference quantity may be an item name, a temporary work item
name; or a system flag. In addition it may be a string value or a
numeric value and must then agree in type with the subject. String

values are automatically converted to numerics if necessary. Numeric
item of various types are converted to the form of the subject.

235

229

www.manaraa.com

4-16

NIPS/FFS

The form of the reference quantity varies; with which of the three
facilities is being used. The widest range of reference quantity
types is found in RASP, where data item names, simple group names,
literals, iudirect address literals, (i.e., literals that have
been stored and given a name), and functions may be used.

In the Output Processor the reference quantity may be an item name,
a simple group name, or a literal. The data item names must be
from the fixed part of the entry or from the same repeating group
as the subject.

In QUIP, the reference quantity may be an item name, a simple group
name, a temporary item name or one or more literals.

TINS

The reference quantity may be a string value or a numeric value
depending on the type of the subject. If the reference quantity is
one of the set of values which the item is known to take in the
file, then the numeric code which the system assigns to the value
may also be used in place of the reference quantity.

urVi

If the subject is an item name, the reference quantity must be a
value agreeing in type with the subject. It may also be another
item of the same type. If the subject is the name of a numeric
item, then the reference quantity may be a procedure name or a
reference name (this being a numeric quantity computed in a
procedure). Also, if the item is of type numeric, the reference
quantity may be an item name for any type of item followed by the
word REPEATS which references the number of values in the item
instance.

If the subject is a procedure name, then the reference quantity must
be a numeric value or another procedure name. If the subject is
PICTURE then the reference quantity must be a valid picture. If

the subject is a count on the number of values in a multiple valued
item, then the reference quantity is an integer.

COBOL

The reference quantity (in COBOL called an object of the conditional)
may not be a literal if the subject is a literal. Otherwise there
are no restrictions. If the subject is numeric and the object non-
numeric (or vice versa), then the numeric quantity is treated as though
it were moved to an alphanumeric data item of the same size as the
numeric quantity.

230
236

www.manaraa.com

4-17

SC -1

The reference quantity may be an item name, a temporary data item
name, a string value or a numeric value.

4.3.1.5 String matching conditions

A special kind of relational condition is that peculiar to alpha-
numeric or string data. A data item in the file is scanned to see
if it contains the literal string expressed in the condition. A
-1!cific capability in such string matching is to allow one or more
characters in the literal string to be "don't care" characters, which
means that the data items may have either any, or any non-blank
character in that position.

GIS

This is called a scan condition and uses the relational operator
SN. The reference quantity may contain one or more instances of a
Special character (the lozenge) to indicate a "don't care" character
and another special character to restrict the search to the beginning
or end of the value indicated in the subject.

MARK IV

String matching may be performed at the beginning or end of the
string.

NIPS/FFS

In a relational condition (as described in 4.3.1.1 to 4.3.1.4), it
is permitted to specify that only the first and/or last few characters
are to be used in evaluating the condition. Alternatively it is
possible to indicate that these characters are to be taken as a universal
match and the conditions evaluated on the remaining characters.

TDMS

No capability is provided.

UL/1

This capability is provided using the relational operators CONTAIN(S)
and DO(ES) NOT COML.:. The reference quantity may contain one or
more instances of a special character (the lozenge) to indicate a
"don't care" character. By using string delimiters around the refer-nce
quantity, leading, terminal and/or embedded spaces may be included.

COBOL

This capability is provided by the INSPECT TALLYING statement.

231
237

www.manaraa.com

4-18

SC-1

In a conditional expression the evaluation of the condition may
be restricted to the leftmost characters of the subject only.

4.3.1.6 Other relational operators

Several systems allow relational operators other than the basic six
(see 4.3.1), and those needed for string matching (see 4.3.1.5).
Typically these are included to handle some special item type.
Some require two or more reference quantities.

GIS

The relational operator BT, meaning between, followed by two
reference quantities, is allowed. The condition

itemname BT A, B

is equivalent to the compound condition (see 4.3.2.4)

itemname GT A AND itemname LT B

NIPS/FFS

The extraction facilities in the Output Processor have no special
relational operators. RASP and QUIP have three special relational
operators. BETWEEN or BT is followed by a pair of reference quan-
tities. The condition is true if the value of the subject is
equal to or between the pair of reference quantities. RASP will
test for multiple ranges in a single IF statement. QUIP will handle
only one reference pair per statement.

RASP and QUIP also have two geographic relational operators, CIRCLE
or CIR, and OVERLAP or OVP or OVERLAPS. Both of these operators
require geographic coordinate data and will not accept any use of a
universal match character, or conversion subroutines. The CIRCLE
operator is used to determine whether the subject is with a circle
defined by the geographic coordinates of a point and a distance.
These two values are the reference quantities for this operator.
The OVERLAP operator is used to determine if polygons bounded by
from 1 to 8 points overlap. For lines, which are polygons defined
by two points, intersection is interpreted as overlap.

TDMS

A range expression may be used as the object of a relational condition
using the relational operator EQ. The range expression consists of a
lower bound and an upper bound separated by three dots.

SALARY EQ 500... 800

232
238

www.manaraa.com

4-19

MARK IV, UL /l, SC-1

No other relational operator is provided.

COBOL

COBOL allows two other kinds of condition called class conditions
and sign condition. A class condition may be used to test whether
a value consists entirely of numeric characters. It may also be
used to test whether a value consists entirely of alphabetic characters.
These conditions may be used only on alphanumeric items (in COBOL
called display items).

A sign condition is used to determine whether or not the value of E,
numeric data item or of an arithmetic expression is less than,
greater than or equal to zero.

4.3.1.7 Existence conditions

An existence condition consists of a subject and a verb. The sub-
ject has the same role as in a relational condition. The verb takes
the place of the relational operator but is not normally followed by
a reference quantity. The existence condition checks the presence
or absence of a value in an instance of an item.

GIS

An existence condition is expressed in one of two forms

itemname AB

where AB means absent, is true if a value has not been supplied for
the item.

itemname EM

where EM means empty, is true if the item is packed decimal or right-
justified EBCDIC and its value is zero. It is also true if the item
is left-justified EBCDIC and its value is all spaces.

MARK IV

An existence condition on a fixed or variable length item may be ex-
pressed by a relational condition using EQ and a value such as zero
or all spaces as the refercice quantity. This test is invalid if
either of these are legal values. If the item is variable length,
then the condition may also be written

itemname EQ itemname

where the two itemnames are identical. If the value is missing the
test fails.

233
239

www.manaraa.com

4-20

NIPS/1FS

An existence condition on an item may be expressed by a relational
condition using EQ and a value outside the legal range of values
for the item, or all spaces as the reference quantity.

TDMS

An existence condition may be expressed in one of two forms

itemname EXISTS
itemname FAILS

The first is true if a value has been supplied for an item, the
second is true if no value has been supplied.

UL/1

An existence condition may be expressed in one of two forms

itemname EXISTS

itemname DO(ES) NOT EXIST

The first is true if a value has been supplied for an item, the
second is true if no value has been supplied.

COBOL

An existence condition must be expressed by a relational condition
using EQUALS and a reference quantity such as zero or all spaces
to designate an absent value.

SC-1

An existence condition may be specified by comparing a numeric
item to zero or an alphanumeric item to blank.

4.3.2 Compound conditions

Compound conditions are built up from simple conditions using
logical connectors. Normally some precedence rule for the con-
nectors is applied. In specifying a compound condition some
degree of implicitness may be allowed to minimize the time re-
quired to write lengthy compound conditions containing a degree
of repetition.

GIS, MARK IV, EIPS/FFS, TDMS, UL/1, COBOL

All systems allow the specification of compound conditions.

240

234:,

www.manaraa.com

4-21

SC-1

Compound conditions may be programmed by nesting conditional ex-
pressions or using control transfers. Explicit compound conditions
are not provided.

4.3.2.1 Logical connectors

The most common logical connectors used are AND and OR. Other
possibilities are NOT, NAND and NOR the last two of which can be
synthesized from AND and OR. If the appropriate relational oper-
ators are provided, it is also possible to synthesize situations
where NOT would be used. The form of expression for the connector
also varies from system to system. In free form languages, the
form AND, OR, NOT is uslip.11y preferred although in some systems a
single character such as & or * may be required. In a forms
oriented system, the logical connector may be indicated by a
suitable character in the appropriate column.

CONNECTOR

SYSTEM
AND OR NOT NOR NAND

GIS AND
&

OR

,

NOT

NARK IV A 0

NIPS/FFS
All extraction

options
RASP batch retrieval
Terminal retrieval

AND

&

OR

,

NOT

TDNB AND OR NOT

UL/1 AND OR

COBOL AND OR NOT

..

SC-1 Not applicable

Figure 4-2
Form of logical connectors

241

235,

www.manaraa.com

4-22

4.3.2.2 Precedence rule for logical connectors

There are four possible precedence rules for the expression

A AND B OR C

These are

AND takes precedence

OR takes precedence

expression undefined

left to right precedence

If AND takes precedence, the expression is true if both A and B
are true or if C is true. If OR takes precedence, it is true if
A is true and if either B or C is true, or both B and C are true.

SYSTEM PRECEDENCE

GIS AND
MARK IV AND

1-NIPS/FFS AND
TDMS AND
UL/1 none
COBOL AND
SC-1 n.a.

1 All three facilities operate this way. If the Output Processor
is used, however, this must be forced by putting a BOOL param-
eter in the CREATE card that initiates batch print out jobs.
Without the BOOL parameter OR takes precedence.

Figure 4-3
Precedence rules

4.3.2.3 Levels of nesting

When several conditions are grouped together, it is usually possi-
ble to nest conditions logically to permit the expression of very
complex selection criteria. Typically, in a free form language,
parentheses are used to nest conditions and hence the number of
left parentheses to the left of a condition is a possible count of
the level of nesting. In a forms oriented system, a level count
may be entered in one column in the form.

242

236'::

www.manaraa.com

4-23

In systems with no limit on the number of parenthetical levels,
there are usually other system limits - such as high speed memory
available when the conditions are translated, maximum number of
characters allowed per statement, or maximum number of item and/or
group names per data extraction, which normally act as limits on
condition nesting.

The number of levels permitted in eai:th system is:

GIS 4

MARK IV 9

NIPS/FFS
OP 0

RASP 8

QUIP no limit

IDMS no limit

UL/1 no limit

COBOL no limit

SC-1 not applicable

4.3.2.4 Compound conditions on the same item

A set of conditions on the same or on different items is used to
build. up the total entry level conditional expression. How suc-
cessive simple conditions must be connected differs in the degree
of repetition of the subject and the relational operator when these
are the same in successive conditions. The simplest way to con-
nect two or more simple conditions is when both have the same
subject and the same relational operator with differing reference
quantities.

GIS

Two or more simple relational conditions on the same item may be
expressed without repeating the item name, as long as the rela-
tional operator is the same. In such cases the comma is used as
a separator to indicate the logical connector OR and the ampersand
to indicate the logical connector AND.

SKILL EQ 'PLUMBER' , 'CARPENTER'
SKILL NE 'PLUMBER' & 'CARPENTER'

If the relational operator changes, the item name must be repeated.

SALARY EQ 500 OR SALARY GE 800

243

www.manaraa.com

4-24

MARK IV

Two or more simple relational conditions on the same item are
written on successive lines on the same form. One column is used
to enter a code, A or 0, indicating the logical connector (AND or
OR) by which the condition on that line is connected with that on
the previous lines. The item name must be repeated even if it is
the same as on the preceding line.

NIPS/FFS

Two or more relational conditions on the same item may be expressed
without repeating the item name as long as the relational operator
is the same. A comma or space is used as a separator between suc-
cessive reference quantities.

SKILL EQ PLUMBER, CARPENTER.
SKILL NE PLUMBER, CARPENTER.
SALARY BETWEEN 100/300, 500/800.

When the relational operator is negative, i.e., NE, the comma or
space has an AND effect, otherwise it has an OR effect.

If the relational operator changes, the item name must be repeated.

SALARY GE 500 AND SALARY LE 800

TDMS

Two or more relational conditions on the same item may be expressed
without repeating the item name for the relational operators EQ and
NQ. The comma is used as a separator between successive reference
quantities and its interpretation depends on the relational operator
used.

SKILL EQ PLUMBER, OR CARPENTER
SKILL EQ PLUMBER, AND CARPENTER

UL /l

Two or more relational conditions on the same item may be expressed
without repeating the subject or relational operator.

SKILL EQ PLUMBER OR CARPENTER
SKILL NE PLUMBER AND CARPENTER

If the relational operator changes, it is not necessary to repeat
the subject.

SALARY GE 500 AND LE 800

244

238:.

www.manaraa.com

4-25

COBOL

Two or more relational conditions on the same item may be expressed
only when multiple reference quantities occur. In such cases, the
subject ani the relational operator may be omitted from the second
relational condition.

SKILL = PLUMBER OR CARPENTER
SKILL NOT = PLUMBER AND CARPENTER

SC-1

No capability is provided.

4.3.2.5 Logically connected conditions on different items

There are various conventions for connecting conditions on di,:fer-
ent items. In some systems the only connector may be AND and this
is implicit. In most cases both AND and OR may be used with the
precedence rule (see 4.3.2.2) being invoked.

GIS

Conditions on different items may be connected by AND or OR. In
either case the connector may be followed by NOT to negate the one
condition following. Each condition is a separate statement and
must therefore be entered on a separate line.

SKILL EQ PLUMBER
AND NOT SALARY GT 500

MARK IV

Two or more relational conditions on different items are written
on successive lines of the same form. One column is used to enter
A or 0 indicating the logical connector by which the condition on
that line is connected with that on the previous line.

NIPS/FFS

Conditions on different items may be connected by AND or OR.

SKILL EQ PLUMBER AND SALARY GT 500

TDMS

Conditions on different items may be connected by AND or OR.

SKILL EQ PLUMBER AND SALARY GR 500

245

www.manaraa.com

4-26

UL/1

Conditions on different items must be written successively without
the connector if it is AND

SKILL EQ PLUMBER SALARY GT 500

If the connector is OR, each condition must be assigned a name
and the expression connecting the two conditions expressed at the
end of all items conditions in an expression called the multi-
level criterion.

COBOL

Conditions on different items may be connected by AND or OR.

SKILL = PLUMBER AND SALARY NOT > 500

SC-1

No capability is provided.

4.3.2.6 Logically connected conditions on several items but with
the same reference quantity

In some systems there is a special capability allowing an abbre-
viated form for expressing two or more relational conditions
which have different subjects but the same reference quantity.
This would be an expression of the form

HIREDATE OR RAISDATE EQ 701201

TDMS

Items of the same type maybe used as a list with AND or OR
preceding final member of the list. There must be one relational
operator and one reference quantity.

BIRTHDATE, HIREDATE; OR RAISDATE EQ 12/1/70
HIREDATE, AND RAISDATE LS 12/1/70

GIS, MARK IV, NIPS/FFS, UL /l, COBOL, SC-1

No capability is provided.

246

240.

www.manaraa.com

4-27

4.4 Conditions on groups

If the entry schema class allows for groups (see 2.2), specifically
for repeating groups and group relations, then capability may or
may not be provided to place conditions on groups. This specifi-
cally excludes placing conditions on the principal items in entries
containing group structure. Conditions on principal items may be
expressed using the basic facilities for conditional expressions
(see 4.3). When facility is provided for representing groups then
it is sometimes necessary to place a condition on the items in the
group as if the group structure did not exist.

The placing of conditions on groups, taking into account the group
structure, may be provided for one of two purposes. First of all
the user may be seeking an entry instance (namely data from the
principal items) for which the group structure satisfies some
conditions. In the second case, the user may be looking for the
data contained along some path through the group structure. In
this case the system must not only evaluate whether the conditions
exist, but must also retain a notation of which paths through the
structure actually satisfy the conditions. A further refinement of
the above comes in the requirement to check for the existence of,
and possibly retain, two or more paths in an entry. In this case
the separation of the extraction (see 4.6) from the conditional
expression becomes less appropriate.

In summRry, the following capabilities can be identified in con-
nection with the expression of logical conditions on data in groups
where the group structure is taken into account.

check for existence of a set of logical conditions on
different items in the group

as above, but noting (in some sense) the data items
which satisfy the conditions

checking for the existence of two or more (including
all) paths through the structure which satisfy a set
of logical conditions

as in the preceding case but noting the count of satis-
factory paths

as in the preceding case but noting also the data items
(and hence the paths)

In the case of expressing logical conditions on groups, there are
two basic approaches to facilitating this. The procedural capa-
bility may be adequate to allow the user to specify all such con-
ditions by means of conventional programming practices, namely,
looping through group and item instances, testing values, and
storing hit values in temporary work items. Alternatively, a

21,7

241

www.manaraa.com

4-28

non-procedural approach may be provided in which special language
elements imply a connection between conditions on different levels
of the hierarchy.

GIS

The procedure control provided permits specification of all capa-
bilities which take into account group structure. Looping through
group and item instances within a structure is specified in LOCATE
EXHAUST blocks. Numbers of hits can be accumulated in the special
temporary items, called TALLYn and values along paths can be stored
in the other temporary items, as long as the limit on these is not
exceeded (see 4.).

MARK IV

No capability is provided on the Information Request form or the
Processing and Record Selection form. However use of own code
hooks to routines written in COBOL and FORTRAN would pemit these
kinds of conditional expressions to be written.

NIPS/FFS

In RASP the retrieval logic used with the IF statement, flags the
instances of the repeating groups in the entry that meet the
conditions of the IF statement. The user may also write a Function
Operator subroutine. When this is done, the Function Operator can
be used as one of the clauses of the IF statement. The subroutine
is written in a procedural language, and all the capabilities listed
ray be programmed.

TDMS

Some non-procedural control is provided for matching a condition
on one level in the structure with a condition on a lower level.
The word HAS is used, as in the following example

WHERE SKILLCDE EQ 5520 AND
SKILLCDEAUS JOBTITLE EQ FILE CLERK

This facilitates checking for the existence of conditions with a
nested group structure.

The system also provides facilities for extracting data from groups

on any level in the structure. The words HAS EVERY may be used
to specify that all subordinates for a given group instance satisfy

a condition.

For example

JOBCODE EQ 1330 AND
PERSONS HAS EVERY FNPJOBCODE NQ 1330

248

242

www.manaraa.com

4-29

could be used to select organizational units which had an authorized
job code of 1330 but none of the employees in the unit actually
had that code. It is not possible to count the number of paths
through a structure and place a condition on that count.

UL/3.

The facilities required to express conditions on nested structures
is provided in the procedure language which is used principally to
express computations on numeric data. For this reason only numeric
data can be stored in temporary items. Counts can be accumulated
within the procedure but paths containing data satisfying the con-
ditional expression cannot be retained for use by the extraction
facilities (see 4.6).

COBOL

All situations can be handled procedurally by use of loops, tests
and control transfers.

SC-3.

Embedded repeating groups may be processed by Report Descriptions
which are called by the main Report Description. Conditional ex-
pressions may be used in the called report descriptions to test
items within the repeating groups, and the results of the test may
be passed back to the main report description through temporary
items. All of the capabilities listed could be handled. The more
complex tests would be programmed using several nested report de-
scriptions and using temporary data items as switches within the
logic of each Report Description.

249

243

www.manaraa.com

)4-30

4.5 Identification of conditional expression

If a conditional expression (or even part thereof) is to be used
frequently, it is useful to assign a name to it and to cause th:,
named expression to be stored in a file of similar expressions for
subsequent invocation.

It is not possible to assign a name to a conditional expression.
However any part of a sub-procedure may be named and cataloged for
subsequent invocation.

MARK IV

It is not possible to assign a name to a conditional expression.
However a whole interrogation may be given a request name and
stored in a catalog. When it is invoked some modification of what
has been stored can be accomplished by use of temporary ittms.

NIES/FFS

Queries may be named and cataloged. They may be stored. with param-
eters that must be supplied at execution time, with default param-
eters that will be used if none are supplied at execution time or
as a complete self-contained unit.

TDMS

It is not possible to assign a name to a conditional expression.
However, the last previously used expression may be referenced by
use of the word SAME. A report description may be saved, together
with a:my parameters, for later invocation. The parameters may
be replaced with values at execution time.

131/1

A conditional expression or any part of it may be defined as a
macro. It is stored in a file and has no meaning after completion
of the use of the interrogation function: it may, however, be in-
voked several times and may have several parameters. Default
values may be assigned to these at definition time. At invocation
time values must be assigned for parameters having no default
values; over..riding values may be assigned to parameters having
default values.

COBOL

It is not possible to assign a name to a conditional expression.
However, a. conditional expression can be embodied in a procedure
and performed by other parts of the program.

250

244

www.manaraa.com

4-31

SC-1

Conditional expressions cannot be named or stored. Report De-
scriptions containing conditional expressions can, however, 1:3?.

stored and retrieved.

4.6 Data extraction

Data satisfying the conditional expression comprising the premise
may be extracted. and placed either into report form or into ma-
chine readable form possibly after intermediate processing. For
the purpose of analysis, the process of extraction is separated
from that of formatting. Extraction considers which quantities
on each structure level (item, group, entry, file) may be in-
cluded in the report or output file, irrespective of the process
of formatting. Separate consideration is given to the features
provided for formatting printed reports (see 4.11) and for for-
matting files for further processing (see 4.13).

GTS

Data extraction may be specified in a QUERY subprocedure (see 4.)
with report writing statements and with statements which cause
writing to a hold file. Both types of statement may be in the
same subprocedure. Data extraction may also be specified in
other kinds of procedures, such as MODIFY or UPDATE (see Chap-
ter 5).

MARK 111

Data extraction may be specified using either the Record Selec-
tion part of the Information Request form or the Output Content
form, the latter being used in conjunction with the Processing
and Record Selection forms.

NIPS/FFS

For extraction from one file in on-line mode, QUIP may be used
only on direct access files, either sequential or index sequen-
tial. In the batch mode, either OP or QUIP may be used to publish
data from a single file. RASP extracts data from more than one
file, identifies it by Q1T /QDFs, and places it in an answer file
fram which OP can be used to write reports.

TUC

Data extraction may be specified using either COMPOSE or QUERY.
COMPOSE is a facility for interactively preparing a potentinlly
complex report format. QUERY is used only in an interactive
mode and the report formats are fairly elementary.

251

24 '5

www.manaraa.com

4-32

mdi

The action part of an interrogation is specified in the Publish
Section which allows the user to output either reports or ma-
chine readable files. In either case, the format of the content
and summary data may be either system supplied or user specified.

COBOL

Use of the Report Writer feature relieves the user of consider-
able Procedure Division programming. All formats must be speci-
fied by the user, who is however relieved of such actions as
writing procedures for moving data, constructing print lines,
counting lines on a page, numbering pages, producing heading
and footing lines when required, recognizing the end of logical
data sub-divisions and updating sum counters. These operations
are all accomplished by the Report Writer Control System as a
consequence of statements that may be included in the Report
Section of the source program's Data Division.

The Report Writer statements to be used in the Procedure Divi-
sion are INITIATE, GENERATE, TERMINATE, SUPPRESS and USE BEFORE
REPORTING. The main loop of the report generation would nor-
mally contain READ and GENERATE statements.

SC -1

Data extraction is specified using report language statements
within each Report Description. These statements process data
items from an entry and print these data items, temporary work
items, or literals in a report format specified by the user in
the non-pilcedural section of the Report Description.

4.6.1 Generalized extraction features

Facilities may be provided for allowing the specification of
reports with system control over format, or with user control
over format. In addition it may be possible to extract files!,
again with either user or system control over format.

246
252

www.manaraa.com

4-33

SYSTEM

REPORTS FILES

USER
FORMATTED

SYSTEM
FORMATTED

USER
FORMATTED

SYSTEM
FORMATTED

GIS yes yes no yes

MARK IV yes yes no yes

NIPS /FFS yes yes yes yes

TDMS yes yes no no

UL /1 yes yes yes yes

COBOL yes no

--

yes no

SC-1 yes no no no

4.6.2 Multiple ional expression

The user may specify one report or file to be produced from the
data entries satisfying the conditional expression. However,
two or more outputs may be specified for the same conditional
expression, without respecifying the expression. These multiple
outputs may be extracted on to different output media.

GIS

In a QUERY sub-procedure, there is no fixed relation between any
conditional expression and the action statements which cause data
to be extracted. Therefore multiple outputs per conditional ex-
pression on an entry are possible. The outputs may include any
mix of output files and reports.

MARK IV

Up to nine reports and/or up to nine extracted files may be gen-
erated for any one entry level conditional expression.

24,7

253

www.manaraa.com

4-311

NIPS/FFS

The number of extractions per entry level conditional expression
depends on whether use is made of previously defined and stored
report formats or not. It so there is no limit; if not there is
a limit of 40 reports per run.

1DMS

Only one report may be generated for each entry level conditional
expression.

152.21.1.

Any desired mix of output files and reports mar be specified,
any or all of which may require sorting. The limit on the num-
ber of outputs allowed is governed by the amount of core assigned
to a given run within an overriding limit of 43.

COBOL

Each RD entry in the Report Section of the Data Division forms
the complete description of one report. It must be associated
with a file in the File Section and the file is assigned to an
output device in the normal manner. More than one report may be
associated with the same file.

SC-1

Only one report may be generated for each PRINT command. Entry
level conditional expressions may Tislify the data extracted and
used for this report.

4.6.3 Limit of output voluae

The facility of limiting the output volume from an interrogation
set may be provided. Examples are an upper limit of the number
of entries satisfying the conditional expression, or an upper
limit on the number of report pages to be printed.

GIS

This facility may be achieved by using a temporary work area to
store a count of the number of entries satisfying the conditional
expression, and jumping out of the programmed loop when this num-
ber reaches a certain pre-specified value.

MARK IV

Two portions of the Run Control form, called Start Search and
End Search are used to limit the volume of output. In each of

248-
254

www.manaraa.com

lt-35

these 16 byte areas, the user may write a value of the entry iden-
tifier. Searching will automatically bypass entries with a value
lower than that in the Start Search area and with a value higher
than that in the End Search area.

On the Processing and Record Selection form and on the Information
Request form, a box called "maximum items selected" (the term
"items" here implies "entries") may be used to limit the number of
hit entries. Also it is possible to limit output from hierarchical
structures when multiple hits are possible.

On the Output Format Specification form, the user may enter a num-
ber between 1 and 9999 to limit the maximum number of pages for
the report.

NIPSALS.

File searches of a specific file may be limited to specified
ranges of values of the high order positions of the entry iden-
tifier items. If only one file is being searched, a primary limit
may be further refined by individual retrievals within the batch.
If a retrieval is being made from more than one file, the re-
trieval must specify completely its own entry identification
limit for each file.

Extraction of the file data may be conditioned on whether it
satisfies some function of file data-values and execution time
specified parameters. Production of output reports may also be
conditioned on file data values or parameters such as number of
records processed or number of pages produced through use of a
conditional STOP statement.

ENE

No facilities are provided in COMPOSE for limiting the volume
of output. In QUERY, a LINES statement may be used to limit
the number of lines output by a PRINT statement. The user is
notified when the limit is reached, and he may terminate the
printing or request a continued output of the same number of
lines.

UL/1

No facilities are provided for limiting the volume of output.

COBOL

Output of a report can be terminated by tests on any of the
fixed data names, LINE-COUNTER or PAGE-COUNTER, followed by a
use of the TERMINATE statement to perform all of the functions

24a.
255

www.manaraa.com

4-36

associated with the termination of a report. A counter in the
READ loop with tests on data in each entry could also be used.

SC-1

An upper limit on the number of entries processed by the report
generator may be used. No upper limit on the number of pages
may be specified.

4.6.4 Sorting

Sorting extracted data is a fairly common feature of the inter-
rogation function. The sort may be provided by the operating
system or there may be a special sort. Regardless of this, fea-
tures of the sorting process include the specification of sort-
keys, their names and order (hierarchy), the maximum number of
characters which can comprise any sortkey, the maximum number
of data items which can be components of a sortkey, the maximum
number of characters which can be contained in all sortkeys, the
types of sequencing provided for sorting entries (e.g., ascend-
ing descending), and whether the user has a choice of collating
sequence.

The term "sortkey" is used here to indicate that an item which
is designated as a sortkey is used to order the selected data
for output purposes only. This must not be confused with an
"identifier" or "sequencer" (see 2.3) both of which may play a
role in the data structure.

GIS

To obtain a report in a sequence different from that of the file
being interrogated, the user must write a QUERY sub procedure to
extract data into a hold file, a SORT sub-procedure to sort the
hold file in the desired sequence and a second QUERY sub-procedure
to produce the report from the hold file. A SORT sub-procedure
uses the single statement

SORT filename itannamel, itemname2,...
DES DES

Up to 64 items of any type may be used as sortkeys. ASC means
ascending", DES means "descending". The sortkey items must be
from the root group of the entries in the hold file.

MARK IV

Using either the Information Request form or the Processing and
Record Selection form, the user can designate up to nine items
of any type as ascending or descending sortkeys.

250
256

www.manaraa.com

4-37

NIPS/FFS

In RASP, one set of data extracted from a file may be sorted on
up to ten different keys, up to ten different sets of extracted
data may be sorted on one key each, or combinations of these not
using more than ten keys may be sorted in a single batch run.
In gun', only one key may be used at a time. Each key may be any
number of data items as long as the total number of characters to
be sorted does not exceed 210. The data items must be either items,
simple groups, and/or items from one repeating group. In any of
these cases the sort may be limited to either the high or low order
positions of an item so long as the item is not a literal, binary
number, or a geographic coordinate.

Output conversion routines may be applied to sortkey items be-
fore they are sorted. The order in which the items are sorted
is determined by the order in which they are written in the SORT
statement. All sorts used the EBCDIC collating sequence. RASP
uses the OS/360 sort and QUIP uses its own.

TDMS

No sorting is possible using the inter-active QUERY facility.
Using COMPOSE, up to ten items may be specified as either as-
cending or descending sortkeys. A special collating sequence
of space, numbers, period, letters and special characters is
used. No actual sorting of data takes place at execution but
the ordering of the output report is faciliated by use of the
indexes on each item. The form of the sort statement is

1771
SORT BY itemnamel, itemname2...

LOW LOW

LOW is the default order.

UL/1

Up to 15 ascending sortkeys may be specified for any one report
or file. The sortkeys may be any item, item length, date part
or numeric quantity derived from items in the entry. The sort-
ing facility is a specially built tag sort using disc working
space and optional tape overflow. The EBCDIC collating sequence
is used.

COBOL

The SORT verb may not be used within the READ and GENERATE loop.
A READ loop may be used to pass entries to the sort. After the
last entry has been passed the sorting is performed. The entries

251
257

www.manaraa.com

4-38

may then be returned to the executing object program one at a
time via a RETURN statement. After each execution of this, a
GENERATE statement may be used to report the sorted data.

SC-1

To obtain a report in a sequence differing from the sequence of
the data base, the user must provide the definition of the struc-
ture of an extracted file including definitions of the desired
data items and the desired sequence. He then invokes a utility
program to populate the extracted file. The extracted file is
then interrogated to produce the sorted report. Any number of
sortkeys may be used; the maximum number of characters in all
the keys cannot exceed 255. Ascending or descending order may
be specified for each key; no choice of collating sequence is
provided.

4.7 Item level extraction

Reports may be divided into two categories which are not neces-
sarily mutilelly exclusive. The first category is that which con-
tains item values or other item level attributes from the file.
The second category contains only summary data based on a pro-
cessing of data in the file, but no actual item level values
from the file (see 4.10.2).

It may be possible to include in a report not only item values,
but also item schema attributes such as items (see 2.1.2) and
item value class attributes (see 2.1.2.2) .

4.7.1 Item schema attributes

Item schema attributes such as item name and type may be speci-
fied for inclusion in a report.

GIS

The column heading, which may be specified for each item at data
definition time, is automatically included in system formatted
reports generated using the LIST statement.

MARK IV

The column heading, which may be specified for each item at data
definition time, is automatically included in systems formatted
reports.

NIPS/FFS

If the QUIP user does not specify an output title or label for an
item at data definition time (see Chapter 3), the item name is
appended when an item value is reported.

258

7,52

www.manaraa.com

4-39

TDMS

To include the item name in a report the name must be entered when
the report is specified.

UL /l

Using the system formatted report facility, item names or item de-
scriptions specified at data definition time are automatically in-
cluded in both formats produced. (The format used and the choice
between item name and item description depend on availability of
space.) In the user formatted report facility, the item name
and/or the item description may be specified for inclusion in the
report. A code list for any coded item may be generated at the
beginning of a report.

COBOL

Since there is no stored data definition available as::, execution
time, no item schema attributes may be included in a report.

SC-1

Item schema atrributes are available in a report description only
if they are included as literals in the report description.

4.7.2 Item instance attributes

The value of an item may always be included in a report. Other
examples which may be included are existence status, date stamp
and length of value.

GIS, MARK IV, NIPS,COBOL, SC-1

Value is the only attribute of an item which may be included.

TDMS

The maximum number of characters the set of values for an item is
found to have may be displayed in a special report using the
DESCRIBE statement.

UL /l

The attributes which may be included in a report are value, length
of value, and date stamp, if the item schema indicates that one is
used.

253
259

www.manaraa.com

4-Ito

4.7.3 Item value decoding

If the set of values which may be assigned to item instances is
predefinably finite then it is often allowed to define an associ-
ated value representation for each value Ln the set. The associ-
ated value may be longer than that stored in the entries and in
this case, the latter could be referred to as the encoded form,
and the other as the decoded form, of the valte.

On extraction of an item it may be permissable to include either
form in the report. In addition it may be possible to include
at the beginning or end of the report a table giving the two forms
for each member of the value set.

GIS

Any decoding defined for an item at data definition time is
automatically performed during item value extraction. Decoding
for all items may be overriddcn on any given interrogation through
the use of the IGNORE statement.

MARK IV

The table look-up facility allows an associated value to be in-
cluded in a report instead of the one in the file.

NIPS/FFS

During processing of the file of entries satisfying the conditional
expression, the Output Processor and QUIP automatically call either
a functional subroutine or a table look-up processor to decode val-
nes. They will call these if the subroutine or table was specified
during data definition. The user may suppress decoding called for
by data definition, or may supply his own subroutine or table to
decode any item or non-repeating group

TDMS

In COMPOSE, there is a capability to define and invoke e table
look-up conversion for any item to be output.

UL/1

Items of type coded may be decoded for inclusion in a report.

COBOL

No capability is provided.

SC-1

The table look-up facility allows an associated value to be in-
cluded in a report instead of the one in the file.

254?
260

www.manaraa.com

4.7.4 Item level derived data

Items of type numeric may be subject to computation to produce asso-
ciated derived values for inclusion in the report. In some cases
only limited arithmetic computation may be performed on individual
items.

The capability to specify the inclusion of computed data may be iden-
tical for each level in the data structure in which case the separ-
ation of the computation of derived data into item level, group
level (see 4.8.1), entry level (see 4.9.1) and file level (see
4.10.1) may be arbitrary. The capability for specifying computa
tion is usually tied in with the file processing algorithm and also
with the statements used to format the computed quantities in report
of output file. The tie-in with the file processing refers to the
systems facility to handle temporary data items as the different
entry instances are examined. The tie-in with printing is a more
semantic one; namely, the same statement form is often used to in-
dicate that a quantity shall be printed as is used to indicate that
it should be computed.

GIS

An arithmetic expression containing one or more items names and also
constants can be specified for inclusion in either a system for-
matted or user formatted report or in a hold file.

MARK IV

No specific item level capability is provided.

NIES/FFS,

An arithmetic expression using the operators ADD, SUB, NUL, and
DIV may be specified. It may use item names and constants. The
result of computations and the printing of results may be con-
ditioned on the item values and on the report format.

MOMS

With the COMPOSE facility, the user may incorporate derived values
in the statements CONTENT and RECAP. These may contain arithmetic
expressions as well as item names or literal strings. Arithmetic
operations including addition, subtraction, multiplication, divi-
sion, exponential, square root, logarithm, integral part and ab-
solute value may be used. In addition six trigonometric functions
(including inverses) are permitted. The QUERY print statement may
also include arithmetic expressions.

255.
261

www.manaraa.com

4-42

UL/1

For multiple valued numeric items, use of the words SUM, MEAN,
MAXIMUM or MINIMUM causes computation of the appropriate function
for the set of values in the item instance.

Further arithmetic computation on numeric data items may be speci-
fied using the Procedure Language. This allows the user to define
a computation procedure either in the Establishment or Revision
Division, in which cases it is stored with the data definition
data, or at the beginning of the Interrogation Division. The Pro-
cedure Language allows the five operations addition, subtraction,
multiplication, division and integer division.

COBOL

Use of ADD, SUBTRACT, MULTIPLY and DIVIDE and of the COMPUTE state-
ment is allowed in conjunction with the Report Writer facilities.
This statement allows addition, subtraction, multiplication and
division operations to be specified.

SC -1

An arithmetic expression containing a numeric item name, constants,
and temporary item names may be used. Arithmetic operations per-
mitted are addition, subtraction, multiplication, and division.

4.8 Group level extraction

The ability to include a whole group in an extraction falls into
two classes. First, it may be possible to include a simple group
by a use of the group name rather than by an aggregation of item
level specifications. Secondly it may be possible to select for
extraction a specific instance of a repeating group within an entry
instance (see 4.4). In the latter case the capability to perform
computation on selected instances of a group may be provided.

GIS

It is not permitted to include the name of any kind of group in a
LIST statement. Specific group instances may be located. by test-
ing of item values within a LOCATE/EXHAUST block and the items
from the groups selected may be named individually for extraction.

MARK IV

It is not permitted to include the name of any kind of group in
the Output Content Speciff.cation form. Selection of specific
group instances within an entry instance is possible only by stor-
ing the individual items in temporary items.

956
262

www.manaraa.com

4-43

NIPS/FFS

In RASP, a SELECT statement may be used to include all instances
of a repeating group, or only those satisfying a prestated con-
ditional expression. Alternatively a third option allows extraction
of all instances if a prestated condition is satisfied. In each
case the entry's principal items are also extracted.

TDMS

Supplying the group name implies obtaining all values of all items
within the group. Specific group instances can be selected for in-
clusion in a report by use of a conditional expression.

UL/1

When specifying a system formatted report, it is permitted to in-
clude the name of either a naming group or of a repeating group.
This is then treated as if all members of the group were named
individually. It is not possible to select a specific group in-
stance within an entry instance for inclusion in a report unless
the items to be included are numeric, in which case the procedure
language can be used.

COBOL

The standard MOVE statement is used to move data into a reserved
area which is used by the report generation facilities to output
the report using a GENERATE statement. Since the MOVE statement
may operate on any level of naming group ("group item") it is
possible in this way to include groups in a report. Selection
of specific group instances may be performed procedurally using
a combination of IF and MOVE statements within the READ/GENERATE
loop.

If no manipulation of the data is to be specified, then the SOURCE
statement can be used to access the data directly, since a SOURCE
statement is an implicit move.

SC-1

Th're is no automatic facility for providing group names in a re-
port. Instances of a repeating group within an entry may be selec-
ted by specifying that an item from the repeating group must equal
a specified value. If no such specification is made all instances
of the repeating group are processed. Selection of instances may
be made within the report description which processes entries of
the repeating group.

251
263

www.manaraa.com

4-44

4.8.1 Group level derived data

The facility for deriving computed quantities based on numeric data
contained in group instances may be identical to that provided for
the item level (see 4.7.1) or for the entry level (see 4.9.1). Ca-
pability provided normally depends on the degree of procedural con-
trol and would normally be closely associated to the facilities for
expressing logical conditions on groups (see 4.4).

GIS, MARK IV, NIPS/FFS, TDMS, UL/1, COBOL, SC-1

The capability provided is a combination of that for expressing
logical conditions in groups (see 4.4) and that for entry level
derived data (see 4.9.1).

4.9 Entry level extraction

It may be possible to include a complete entry in an extraction by
use of a single statement.

GIS

A complete entry may be included in a system formatted report using
the statement

LIST RECORD

which causes all items to be listed in order of occurrence in the
entry. An analogous facility is available for including complete
entries in hold files.

NIPS/FFS

Using RASP, the SELECT statement may be omitted (see 4.2). This
causes the whole entry to be included in the extraction.

EMS

A complete entry may be included in a systems formatted report
using the statement

PRINT ENTRY

which causes all items to be listed in hierarchical order.

ULA

A complete entry may be included in a systems formatted report of
a systems formatted file using the statement

PUBLISH RECORD

258
264

www.manaraa.com

It -145

which causes all items to be listed in ascending order of item
number.

COBOL

The SOURCE statement may be used to include a whole record in a
report.

MARK IV, SC-1

No capability is provided.

4.9.1 Entry level derived data

If the entry contains numeric items, there may be capability to
derive and extract quantities based on the values of two or more
numeric items in an entry instance. This capability may supple-
ment or completely subsume that for providing item level derived
data (see 4.7.4) which applies only to a single item. This capa-
bility normally subsumes that for group level derived data (see
4.8.1).

GIS

The facility for including arithmetic expressions in a QUERY sub
procedure allows the expression to include several item names as
well as literals and the names of temporary working items.

MARK IV

To perform computation across items in an entry, temporary items
must be defined using the Temporary Field Definition form. The
Processing and Record selection form then allows the computation
of new quantities. On each line of the form a three operand state-
ment may be embedded which assigns the sum, difference, product or
division of the first two operands to the third.

NIFS/FFS

Arithmetic expressions may be included which allow numeric items
to be added to or subtracted from a temporary item.

ED'OLD

Computation on two or more items in an entry may be specified in
COMPOSE using the statements CONTENT and RECAP (see 4.7.4).

The Procedure Language nay be used to compute quantities based on
two or more items (see 4.7.4). Any procedure which operates on
an intra-entry level is called a "record oriented procedure".

259
265

www.manaraa.com

4-46

COBOL

See 4.7.4

SC-1

Arithmetic expressions which contain one or more numeric items may
be used.

4.10 File level extraction

It is not normally possible to extract a single file from a data
base using one statement. If multi-file capability is provided,
then the file in the data base on which the interrogation is to be
performed is normally identified explicitly in an initial part of
the interrogation statement.

Given that a set of entries are being extracted, there are several
kinds of capability associated with deriving reports from across
the set. These may be identified in two classes, the first con-
taining the frequency of occurrence of file values and the second
containing values computed directly from those in a file by a pro-
cess other than counting frequency of occurrence.

4.10.1 File level derived data

The computation of data based on that contained in several entries
may be achieved by one of two basic approaches. Either the user
controls the computations by definition of temporary items and by
specifying the way in which the value is computed across the set
of entries. The alternative approach means that the computation
of certain frequency required functions, such as summation, is
built into the system and the user may invoke the function with a
single statement or word.

GIS

A set of "automatic" file processing statements is provided which
perform certain functions across the entries of a file. Since

%11 entries are included, these statements are usually used on
hold files of entries selected in a previous interrogation. The
statements may not be used within a LOCATE/EXHAUST block since they
provide their own file processing algorithm. Each statement or
group of up to five contiguous statements initiates a pass over the
input file.

The form of the statements is

TOTAL itemname
AVERAGE itemname

260
266

www.manaraa.com

4-47

TOTAL builds up the sum of values of item name and AVERAGE computes
an average by computing both the sum and a count (see 4.10.2) and
then dividing.

Similar facilities exist for computing the sum and average of an
item based on the changes of some other items. With all these
facilities there is a standard output format for the computer
quantity.

A further set of automatic computation is provided by the so called
"digit-appended" processing statements which may be used in con-
junction with LOCATE/EXHAUST blocks and when the computed quantity
is to be included in a user formatted report.

TOTALn arithmetic expression
AVERAGEn itemname

numeric literal

where the appended n may be between 0 and 99.

Each time a TOTALn is executed the contents of the quantity specified
in the rest of the statement are added to the specially assigned
working item. The computed quantity may be output at any time by
being referenced in a LIST statement. AVERAGEn is similar ixcept
that the average is computed only when referenced in a LIST statement.

Finally in addition to the above special functions, it is also
possible to compute file level derived data by use of procedural
statements.

MARK IV

Using the Output Content Specification form, five functions, identified
as TOTAL, CUMULATIVE, MAXIMUM, MINIMUM and AVERAGE may be specified
for computation across the set of entries satisfying the conditional
expression specified using the Processing and Record Selection form.
Each may be computed automatically for printing at control breaks
and/or at the end of the report. The functions may be specified
for an item name in the entry or may not be applied to data computed
in temporary items.

NIPSLFFS

Using the Output Processor, data items may be summed across the
entries in the Qualifying Data File.

2611

267

www.manaraa.com

4-48

With QUIP, the following statement may be used

t

AVERAGE itemname

COMPUTE tempitem EQ PERCENT itemnamel/itemname2

VARIANCE itemname

The quantities computed are printed in a system supplied format
with no facility for user over-ride.

It is also -)ossible to compute the sums of the values of one or
two items for each occurrence of values of other items. A sum
may also be accumulated for remaining values of the items, other
than thoae values specified individually.

The format of the statement is

FOR itemnamel EQ valuel [,value2,] [if]

[AND itemname2 EQ value3 [,value4,] [if]]

SUM itemname3, [itemname4,] [HTOTAL]

Assuming the AND clause is used, a table is produced with the
values of itemnamel on the horizontal axis and values of itemname2
on the vertical axis. Tnclusica of the asterisk causes accumula-
t4on of the residliAl sums for each item. Inclusion of HTOTAL
causes inclusion of row sums.

TDMS

Both QUENT and COMPOSE permit the use of the functions such as SUM
AVERAGE, AMMUM and COUNT. In QUERY the functions are applied
only to values isolated by a condition expression. In COMPOSE,
using the RECAP or CONTENT statements, the statement has a range
which implies the range over which the function is computed.

uida.

To compute values across a set of entries, a special type of
procedure called a "file oriented procedure" must be specified.
These procedures may invoke "record oriented procedures" (see
4.9.1). Using this facility, computations across a set of
entries may be specified for print out at the end of the report.
It is also possible to cause intermediate print out at sortkey
breaks.

26a
268

www.manaraa.com

14-5o

MARK IV

A function called COUNT, analogous to the other five (see 4.10.1)
is provided with similar capabilities and restrictions. Further
requirements to count the occurrence of values may be specified
using temporary items.

NIPS/FFS

It is possible to compute counts using a statement form similar
to that used for computing sums, namely

FOR itemname EQ valuel [,value2,] [if.]

[AND itemname2 EQ value3 [,value4,] [if]

COUNT itemname3 [itemname4, ...,] CHTOTALj

TDMS

The smR1lest and largest values for any item and the number of
occurrences of eann in the file may be displayed with the QUEx(Y
facility by using the SHOW statement. The user would then nor-
mally use the SEARCH facility which allows him to specify a low
value and a high value and an integer. A report is then dis-
played showing values between the limits within a frequency indi-
cated by the integer, for instance every fifth value.

A COUNT statement may be used to obtain a frequency distribution
of item values in the set of entries or groups selected.

UL/1

Special reports, called COUNT reports, may be generated by use
of a COUNT statement. The frequency of occurrence of any extracta-
ble item attribute (or it or entry level derived data) across a
selected set of entries may be generated. Two or more COUNT
statements may be used to generate reports containing the frequency
of co-occurrence of the items or other quantities included in the
statement.

An extension of the COUNT report on a single quantity is provided
by the INVERT statement. This allows not only a list of values
occurring -Ind the frequency of occurrence of each from the selected
set of entries, but also the values of some other quantity (such
as another item or a record oriented procedure from the correspond-
ing entries. If no other quantity is specified, the value (or
values) of the entry identifier is automatically included.

2G3
269

www.manaraa.com

14-149

COBOL

Use of the SUM clause in the Report Writer facility automatically
causes provision of a temporary item. As each GENERATE Statement
is executed, the values of the numeric items named in the sum
clause are automatically added to this temporary item. The sum
can be printed when required and can also be reset under user con-
trol. Using this facility, both row sums and column sums can be
generated.

SC -1

Data items may be summed across a file by using temporary data
items which are modified in the report description processing for
each entry. The temporary items may then be used in a summary
section at the end of the report.

4.10.2 Cross entry counting

The facility to compute the frequency of occurrence of values
according to specified critee.a is frequently provided. If a
built-in facility to accumulate sums of va]ues is provided, (see
4.10.1), then facility to accumulate value counts may be specified
in a similar way. In some cases the counts may be included in the
body of ard/or at the end of reports containing computed values.
In other cases, count reports have a special format and may not be
associated with the reports.

GIS

Using "automatic file processing statements" similar to thor for
computing slims and averages, (see 4.10.1), it is possible to
accumulate a count of existing values for any item. A parallel
facility permits incrementing a count each time a value changes
from that in the previous entry. The statements used have the
formats

COUNT itemname
UNICOUNT itemname

The saae restrictions on use apply as for TOTAL and AVERAGE. Analo-
gous "digit appended" processing statements, namely COUNTn and
UNICOUNTh are also provided for more procedural counting require-
ments.

,64
270

www.manaraa.com

4 -51

COBOL

Counts of the frequency distribution of values across a set of
entries in the report must be computed procedurally within the
READ /GENERATE

SC-1

Temporary work items may be used to count instances of an item
across entries.

4.11 Report formatting facilities

FacilitiPq for formatting reports complement those for specify-
ing what data and derived data may be included irrespective of
format. The report formatting facilities are on different part-
of a procedural spectrum. At one end the format is completely
under control of the system such that the user specifies only
what is to be included. Sometimes the system may even compose
column headings. At the other end of this spectrum the user has
a fairly complete control over format of all content, detail, and
peripheral text, such as headlines.

GIS

System formatted reports are provided by use of the LIST statement
which may be used to generate a report containing a set of quanti-
ties which may be any selection of item values, literals, values
from temporary items, or values computed by evaluating arithmetic
expressions.

To specify user formatted reports, a REPORT statement must be used
together with associated statements which allow the user to control
the format and spacing of all parts of the report. A REPORT state-
ment must be used within the LOCATE /EXHAUST block used to pass the
file (master file or hold file). Such a facility may be used in
either a QUERY subprocedure used for interrogations or in a
MODIFY subprocedure used to specify updating (see chapter 5).

MARK IV

Tha Report Specification portion of the Information Request form
is used to specify system formatted reports. With this facility,
it is possible to specify sorting and also the computation o2 the
six standard functions (see 4.10.1 and 4.10.2),

User formatted reports require use of at least three forms, namely
Processing Record Selection, Output Content Specification, and
Title. A Title form is used to specify non system controlled
reports (called free form).

n5
271

www.manaraa.com

4-52

Nips/lir s

QUIP provides a system formatted report facility with some limited
user over-ride. It operates in two modes. One, called the paging
mode, formats the output into fixed length pages. The other,
called the display mode treats the output as one eYtremely long
page and is intended for output on video display scopes.

User formatted reports may be specified using the Output Proces.-lor.
Default options in this facility allow the user to specify reports
which are almost systems formatted.

TDMS

The QUERY facility, for interactive use from a terminal, allows a
user to specify system formatted reports containing item values,
results of computations, and certain sunminyy derived data. COMPOSE
may be used for more complex systems formatted reports but also
provides several statements which allow the user complete control
over report format.

UL 1

System formatted reports are provided by use of the Automatic
Report Generator. This facility allows the specification of sort-
keys, heading lines, footing lines and repor titles. The report
specification is analyzed to decide which of two built-in formats
to use. If it is possible to fit all printed qual.tities from an
entry within the page width allowed, a columnar format is used.

T. specify user formatted reports, the Complete Report Generator
is used. This allows extra statements, not permitted in the Auto-
matic Report Generator, with which the user must place each printed
quantity in a two dimensional matrix of which there may be more
than one across the width of a page.

COBOL

The Report Writer facility is less procedural than complete tailor-
in, of a report using other Procedure Division facilities. The
Report Writer allows the user to define the format of several
report blocks which are then used under procedural control in the
loop generating the report. Built-in facilities provide for line
counting and page counting.

266
272

www.manaraa.com

4-53

SC-1

User formatted reports are specified using the RDC-1 Report Lan-
guage statements in the Report Description programs. Default
options are included for such features are margin settings and
page length.

4.11.1 Item level editing

The editing of an item level quantity, irrespective of its position-
ing within line, page. or report block may be specified in a number
of ways. Sometimes an edit mask is entered for the item at data
definition time, sometimes at report specification time. Sometimes
it may be specified at both times with the latter overriding the
former.

GIS

Before an item value is placed in a report (either user formatted
or system formatted), it is converted and formatted in accordance
with the decoding and mask specification entered as part of the
data definition (see 3.2).

MARK IV

Item level editing may be specified for each item as part of the
data definition. It maybe over-ridden in a user formatted report
by use of an alternative specification using the Output Conterb
form.

kap,s/FFs

Item level editing may be specified for each item as part of the
data definition. It may be over-ridden or suppressed in a user
formatted report specified using the Output Processor. Using
QUIP, the edit masks specified as part of the data definition are
always used.

IBC

In COMPOSE, item level editing may be specified in a MASK state-
ment. The picture forms allowed control placement of decimal
point, commas, prefixes, and suffixes. Leading zero suppression
may also be specified.

Item level editing may be specified as part of a user-formatted
report specification only to the extent that the form in which an
item value (or a derived value) is printed is determined by the

267
273

www.manaraa.com

)4-54

size of the field available to print it. Text may be inserted to
the right of or above each printed quantity, and thereby play a
role in influencing the format of the printed quantity.

COBOL

Item level editing is controlled by the Picture clauses specified
as part of the data definition (see 3.2).

SC -1

Item level editing may be specified as part of the statements
which generate the detail lines of the report. Only numeric items
may be edited; alphanumeric items are printed as they appear in
the data base.

4.11.2 Resort body formatting

The formatting of the body of a report includes the placement of
item level quantities on a line, the specification of report blocks
(both vertically and horizontally) across the paper, and control-
ling the width and height of a page.

4.11.2.1 Item level placement

In a system formatted report, the user typically has no contrni
over item level placement although he may be allowed some minimum
control such as specifying the spaces to be left between adjacent
columns in the report.

In a user formatted report, there are two basic approaches to the
placement of item level quantities. Either the user must place
each quantity in a given location with respect to the page, the
line on the page, or some previously defined block within the page.
Alternatively he must step through from one item auantity to the
next locating each quantity with respect to its predecessor, caus-
ing a jump to the next line or block if necessary.

GIS

Using the LIST statement, the user has no control over item level
placement. With the REPORT statement, the user must designate
lines of the report body as either a detail line or a summary line,
using a DETAIL or SUMMARY statement of the form

{DETAIL
SUMMARY Rm. conditional-expression]

pp itemname
pp pp pp itemname
SPACEn

968
27)4

www.manaraa.com

4-55

where pp designates the left-most position of the field in which
the quantity is to be placed. If there is more than one pp designa-
tion, this means that several values for the quantity are expected
and are to he printed in the successive locations.

The SPACE statement indicates the number of lines to be skinned
before the line designated is printed. The line may be included
based on evaluation of the conditional expression.

MARK IV

In the Report Specification portion of the Information Request
form, a two digit column is provided in which the user may indicate
the number of spaces to be left before each printecl quantity. If
it is left blank, two spaces are left automatically. The width of
columns is determined by taking the longer of the column heading
and the edited item. The capability provided in the Output Content
Specification form ased for user formatted reports is identical.

Using Title Forms, the user has control over the placement of items
on the page.

NIPS/FFS

With QUIP, the user has no control over item level placement.
Using the Output Processor, a number of statements allow full con-
trol over the placement of items, including also the facility to
place one quantity or another in a designated location depending
on the evaluation of a conditional expression.

The basic statement is of the form

itemname

LINEn pp tempitem name

system name

Possible system names refer to the page nuyhcr and date. To prirt
a variable length item which would overflow a fixed length loca-
tion on a single line, the following statement is used

LINEn ppl pp2 itemname

where ppl and pp2 designate the right-most and left-most positions
on the line.

269
275

www.manaraa.com

)1_57

Facilities associated with that of defining blocks include those
for specifying sorting and summary data. If more than one block is
allowed across the width of the page, then the user may be able to
choose between sorting in which the horizontal direction has pri-
ority over the vertical and vice versa. Alternatively one of these
two may be built-in, thus not allowing a , user option.

GIS

Using the LIST statement, only single line blocks may be defined.
However if the data to be printed is too long for one line, it
overflows on to the next line. With the REPORT statement, multi-
line blocks, one across a pane width, may be specified in a LOCATE/
EXHAUST block. Blocks which overflow the length of the page can
also be specified in this way. To generate a report containing two
or more blor!ks across the width of a page, it is necessary to store
entry data in temporary locations and then to print each line
partly from the current entry, partly from the tmaporary locations.

MARK IV

Using the Information Request form, only single line blocks may be
defined. However if the data to be printed is too long for one
line, it overflows on to the next line. On the Output Content
form a column called END LINE may be used to allow two line or
multi-line blocks. It is not possible to have more than one block
across a page. One block may fill a whole page or more.

NIPSLFFS

In the Output Processor, the user may define multi-line blocks. In
QUIP, statistical data maintained by the system is used to deter-
mine the format of each line. The LIST statement uses as many lines
as necessary to print the items specified. After the first line,
each line is indented.

TAMS

In COMPOSE, the CONTENTS ARE statement is the normal way of defin-
ing print lines. Multiple uses of this statement are permitted to
build up multi-line report blocks. Any une use of the statement
may cause printing of more than one line if heirarchical relation-
ships are involved.

UL /l

With the Automatic Report Generator, the data is automatically
printed. in a single line block if it will fit across the width of
the page. Otherwise, a completely different format is used in
which each item value is printed on one line (or more if necessary),
together with the item description.

2j0
276

www.manaraa.com

11-56

1DMS

With QUERY, the user has no control over the item level placement.
Using COMPOSE, the CONTENTS ARE and RECAP statements provide the
capability to designate the order in which the output quantities
appear across the page. Use of the "touch up" facility provided
by the SPACE, SHIFT, FEED and PUT statements gives the user more
complete control over format.

UL /l

With the Automatic Report Generator, the user has no control over
item placement. With the Complote Report Generator he normally
declares a two dimensional block into which each item level quan-
tity must be placed. The format of the statement used is

name ROW n COLUMN n [other specifications]

This will cause the quanti'y named (either a item or zomputed
quantity) to be placed in a field starting on the n th position of
the m th line of the block. It may extend to the next quantity on
the same row. "Other specifications" include designating the
quantity as a sortkey, calling for a new page on a 7alue change,
and inserting text before the printed quantity.

COBOL

The user must define print lines in a report group by means of LINE
clauses. He may position item values on a print line by means of
a COLUMN clause. The Report Writer Control System automatically
supplies space fill between all items on a print line.

SC-1

Items may be placed at a given position on the page relative to the
left margin, or they may be placed at a given displacement past the
previous item. A TAB VERTICALLY statement may also be included to
position to a specified line on the page relative to the top of the
page.

4.11.2.2 Report blocks

The Ludy of the report normally consists of blocks, where a block,
in the simplest case, is a single line of print across the full
width of the page. Purther possibilities are multi-line blocks,
multi-page blocks, and two or more blocks across the width of a
single page and blocks wider than the width of a page wrapped over
either within the same page or on later pages.

27.1

277

www.manaraa.com

)4-58

The user of the Complete Report Generator may specify the number of
lines in a block using a statement

ARRAY LENGTH integer

If he does not, the length of the block is determined automatically
by the highest ROW specification (see 4.11.2.1) allowing that data
on that line may overflow on to further lines. He may also specify
two or more blocks across the width of the page using the statement

ARRAY WIDTH integer

In this case, the maximum length of a block is eight lines. If an
"array width" is not used, the width of a block is taken as the
width of the page. If sorting is specified in conjunction with
two or more blocks across the width of the page, then the sorting
is automatically across the page.

COBOL

The Report Writer feature allows the user to define multi-line
blocks (called "report groups"). These blocks are defined in the
Report Section of the Data Division and a hierarchical description
of the contents of the blocks is used similar to that in the Record
Description. Each 01 level "entry" in the Report Section and its
subordinate "entries" covers a "report group". A "report group"
.6o be printed must be printed entirely on one page and may not be
split across pages. Report groups cannot share a line with other
report groups. Report groups placement is directed by LINE and
NEXT GROUP clauses (mediated by the PAGE clause).

SC-1

The procedural statement in the report description gQiierate a
report block for each entry of the file being interrogated. The
size, content, and format of each block are completely controlled
by these statements. No restriction as to number of lines or number
of pages in a block exists. Blocks within a report may hair- differ-
ent formats and any number of different formats is permited.
Since the sorting of the file is performed before these blocks are
formatted, the blocks themselves cannot be sorted by the system.

4.11.2.3 Page size control

The width of the page for a report may normally be varied for each
interrogation. Control over the length (or height) of the page
size may also be possible in order to facilitate r,enerating reports
as preprinted forms.

272
278

www.manaraa.com

4-59

GIS

Both width and length of the report page may be specified in the
report specification using the REPORT statement as follows

REPORT WIDTH integer BODYLINES integer

The BODYLINES clause is used to specify the number of lines in the
main body of the report on each page, excluding heading lines and
footing lines.

MARK IV

The width and length of the report page may be controlled using the
Output Format Specification form. In both cases a number or one
character alphabetic code may be entered into a three character
field on the form, where the one character code selects one of
five standard sizes. A blank field in either case defaults to the
installation standard.

NIPS/FFS,

In the Output Processor, the user may control bath page 1Nidth and
the number of lines between last header and first footing line.
This is done with a statement

FORMAT PRINT SPACEn SIZEk, LINESm

where SPACE controls line spacing.

In QUIP, the statement

NUNES = integer

controls whether the page is of infinite length (integer is zero),
or a fixed length.

TDMS

In COMPOSE, page width may be controlled by use of SPACE and MASK
statements, and page length by use of FEED and PUT statements.

UL/1

The page width may be specified in either the Automatic Rrport
Generator or the Complete Report Generator using a statement of
the form

PAGEWIDTH n

273
279

www.manaraa.com

4-60

If this is omitted a default size of 132 characters is chosen. The
page length is built into the system at sixty lines per page. It
could be changed only at system assembly tfme.

COBOL

The page width is controlled only by the way in which the report
body is formatted. The page length is controlled by the PAGE clause
which defines also the vertical sub-division in which the output
groups are presented.

SC -1

The left and. right margins used in the report and the page length
of the report may be specified by Report Language statements. The
margins or page length settings may be modified at control break
in the report. A system default for each setting is used if none
is specified.

4.11.3 Titles

Titles may be included at the beginning or end of a report and
typically consist of lines of text. Capabilities may be provided.
for including other types of data within a title line.

GIS

In the REPORT statement, title may be written on the first page of
the report using a title statement which is of the form

TITTR [ON conditional-expression]
pp literal-string [ON conditional-expression]
SPACE n

The SPACE statement indicates the number of lines to be
skipped, on the page before the title is printed. A title may have
several lines and may be included or omitted based on evaluation
of a conditional expression.

MARK IV

A special form called the Title form must be used to specify a
title for a report. Only user formatted reports, namely those
specified in the Output Content form, may have a title preceding
the report. The title appears on the ':econd numbered page of the
report. If the number of lines is less than 12 the title is
centered vertically. Otherwise it starts on the top line of the
page.

274.

280

www.manaraa.com

4-61

NIPS/FF'S

With the Output Processor, title lines may be printed at the begin-
ning of a report following any header lines specified, Title lines
are specified by a statement of the form

TillTIN,T;INEn PP

litemnames t

text

and may be used to include initial values and identifying text at
the beginning of a report. Similar facilities are provided by the
FINALLINEn statement for the end of a report.

In QUIP, a similar effect can be obtained by conditioning the
desired printing with the INITLAL operator.

TDMS

A title may be printed at the top of the first page of a report
using a TITLE IS statement. The title is normally centered on the
line but using "touch up" facilities, other positioning is possible.

A title may be printed at the center of any line on the first
report page using the statement TITLE followed by an integer for
the line number followed by a literal string which mus be shorter
than the width of the page. Several title lines may be specified.
If the word COLUMN n follows a title specification, then the first
character of the string is in that position. Otherwise the string
is centered across the line.

COBOL

A title is specified by defining a specific type of "report group"
called a RenorL Heading which is processed only once during the
generation cf the report, namely during the processing of the first
GENERATE statement executed. The Report Heading group is similar
to other report groups in the report, and may be placed alone on
a page.

SC -1

Titles may be included at the beginning of the report by putting
literals in the non-procedural section of the report description.

275
281

www.manaraa.com

4.11.4 Heading lines a-id footing lines

Heading and footing lines are lines of text which may be included
at the top and bottom, respectively, of each report page.

GIS

When the LIST statement is used, a set of column headings may be
automatically generated from those inputed at the time of Data
Definition. However the user may replace these including short
literals in the LIFT statement preceding each item name. No other
heading or footing lines are possible with the LIST statement.

When the REPORT statement is used, heading and footing lines may
be produced with statements similar to that used to include a
title (see 4.11.3).

MARK IV

Using either the Information Request form or the Output Content
form, the column headings automatically generated are those pro-
vided at Data Definition time. In both cases the headings may
occupy up to eleven different lines on each page, the first and
last always being dashed lines to highlight the headings.

The Information Request form allows the user to specify one head-
line of up to 59 characters which is automatically centered on the
top line of each page unless the page is too narrow in which case
it is centered on the second line.

If the Output Content form is used, the title form may also be
used to include one or more heading lines on each page of the report.
It is possible to produce footing lines by printing heading lines
at the bottom of the page. Roth may be specified using the Title
form and free form text.

NIPS/FFS

With QUIP, up to ten heading and up to ten footing lines may be
specified by placing a literal character string after HEADERn or
TRAILERn. In the page mode, the heading and footing lines will be
centered at the top and bottom of each page. In the display mode,
the header appears only at the bottom of the infinitely long page.

276
282

www.manaraa.com

11 -F3

With the Output Processor, the user can specify HEADERm and
TRAILERn lines (where n can range from 0 to 9) and one OVERFLOW
line per report. In HEADER and TRAILER lines, the user can specify
the printing position of system named variables, such as OPDATE,
PAGENO, and CLASSIF. He can also specify the number of lines yet
to be printed on a report page and the number of instances of
repeating group n to be processed.

In the OVERFLOW :Line, the printing positions of data items, system
named variables, and literals may be specified. The OVERFLOW line
prints after the header lines on pages reached by overflow from a
previous page. HEADER, TRAILER and OVERFLOW lines may all be con-
ditionally printed on the basis of the value of system named
variables.

TDMS

Using COMPOSE, it is possible to include heading lines using a
HEADINGS ARE statement. These are effectively column headings aud
are normally at the top of each page. With the "touch up" facil-

it is possible to place them anywhere on the page.

trai.

Using either report generator facility, it is possible to include
several heading lines and several footing lines which are auto-
matically centered on the line unless a specific starting column
is indicated. Values from the most recent entry examined or the
result of a computational procedufe may be included in heading
lines or footing lines.

COBOL

Both heading lines and footing lines are specified by defining
specific types of "report groups" called Page Heading and Page
Footing. When these are used, a PAGE clause must be included in
the Report Description.

SC -1

Up to three heading blocks and one footing blocks may be specified
to appear on each page. There is no restriction on the number of
lines in either. The heading blocks may include data items as well
as literals.

777

283

www.manaraa.com

4-64

4.11.5 Other embedded literals

Apart from titles, heading lines and footing lines, it is usually
possible to specify other literal strings of text for inclusion in
the body of a report. Such literals may be item oriented. in the
sense that they are appended to each instance of an item level
quantity appearing- They may also be oriented towards report blocks
or to summary data appearing at sortkey control breaks.

GIS

Using the Report Specification facility, in both the DETAIL and
SUMMARY statements, the quantity to be printed may be a non-numeric
constant. Its inclusion may be conditioned on the evaluation of a
conditional expression.

Using the LIST statement, it is also possible to embed literals in
output lines.

MARK IV

No other embedded literals are permitted with the Information Re-
quest form. However with the Output Content Specification form,
the user may include short strings of text when specifying output
editing mask to over-ride those supplied at Data Definition time.

NIPS /us

Using either QUIP or the Output Processor, literals may be included
anywhere in the main body of the report.

TDMS

Using COMPOSE, literal strings may be specified. with CONTENTS ARE
and RECAP instead of the item names.

With the Complete Report Generator tha user may append either the
item name, item description, or a literal to the printed quantity.
The value, and its appendrze are formatted in the same report field.

COBOL

Literals may be included anywhere in any type of report group, if
required based on evaluation of conditional expressions.

SC -1

Literals may be printed anywhere in a report block or in a summary
section.

078

284

www.manaraa.com

4-65

4.11.6 Control break facilities

Control breaks occur either on value changes in sortkeys or on page
changes. In either case various facilities may be provided for
special action at such breaks. Summary quantities may be printed
(either user formatted or system formatted), special values may be
included or special text. It may be possible to jump to a new page
on a sortkey break.

GIS

Assuming that the entries which are being formatted into a report
have been sorted, a special conditional expression containing the
relational operator BR (break) can be used to include summary data
at a control break. Other conditional expressions may also be
used. However BR is included specially for the control break
requirement. The condition is true every time an item (or other
quantity) changes value, except for the first time it is tested.
There is no explici4, or implicit interaction with sorting which
must have been specified in a separate sub-procedure.

Skipping to a new page on a control break can be accomplished with
an EJECT clause in the associated SUMMARY line specification.

MARK IV

In a system formatted report specified using the Information Re-
quest form, the user may identify up to nine control breaks which
need not necessarily be identical with sortkeys which are separa-
tely specified. The user may identify a control break as a sub-
title break or a page break. In the former case the new value of
the item is printed as a sub-title after any summary data has been
included for the preceding value. If the control break is identified
as a page break, then a skip to a new page occurs after printing
the summary data for the preceding value. The new value of the
item is automatically printed on the new page.

In a user formatted report specified using the Output Content
Specification form the identical capability is provided.

NIPS/FFS

In the Output Processor, a conditional expression using the special
relational operator CHANGE(S) or CH can be used to perform actions
at a change in value of an item in the file or of a temporary
item. The actions which may be performed are computing, printing
or writing output records. The word COMPLETE causes actions which
are similar to those performed with FINALLINE.

279
285

www.manaraa.com

4-66

In QUIP, the words INITIAL, CHANGES and FINAL provide for condi-
tional computation or printing on value changes. INITIAL and FINAL
allow for special action at the beginning or end of a report.
CHANGES allows computation and printing between the set of entries
with one value of an item and the set with the next.

TDMS

Using COMPOSE, it is possible to include a RECAP statement to
specify information to be included at control breaks. The RECAP
statement interacts with the SORT statement. For each item in-
cluded in the SORT statement, there may be several uses of the
RECAP statement. A RECAP OVERALL statement may be used to include
derive data at the end of a report.

There is no facility provided for including summary data on page
changes. The FEED statement facilitates jumping to a new page on
a control break.

UL/1

With either the Automatic Report Generator or the Complete Report
Generator, it is possible to include derived data at sortkey con-
trol breaks. This is specified in a statement of the following
type

COMPUTE procname BY SORTKEY n COLUMN m

This causes the file oriented procedure procname to be invoked each
time the nth sortkey changes value.

There is no explicit facility provided for including summary data
at page changes although it would be possible to simulate this
under certain rtircumstances by incrementing a user provided line
count in a user written procedure and using the line count divided
by number of lines per page as a sortkey. Interaction with other
sortkeys on value must then be avoided.

It is possible to include the word NEWPAGE with any item (whether
it is a sortkey or not although normally it would be). When the
item changes value, a jump to a new page occurs.

COBOL

Special "report groups" called CONTROL HEADING and CONTROL FOOTING
mad- be specified for inclusion at control breaks.

SG 1

Data items may be tested to take special action for a given value.

280
286

www.manaraa.com

)4-67

4.12 Interrogating the stored data definition

Although it may be possible to include item schema attributes (see
4.7.1) in user specified reports, special facilities may be pro-
vided to generate reports which include only schema type information.
Such facilities are usually available to any user, althcugb. they
may be restricted to privileged ase by the data P.:aministrator (see
Chapter 8).

This capability must not be confused with that of generating a
report containing essentially all information in the stored data
definition. This facility is normally provided by self-contained
systems and is used at the time the file is created (see Chapter 6)
and at the time it is updated (see Chapter 8). Discussion here is
restricted to facility for selecting and reporting parts of the
stored data definition.

GIS

The stored data definition may be printed in a report using a
statement of the form

DDP [filename]

If no file name is included, a list of all file names and synonyms
is printed. No facility is provided for selecting data about
specific items. The report for a specified file contains file
level data, item definitions, item name synonyms, sub-item d:,fini-
tions, group level data, editing specifications and encoding-decod-
ing specifications.

MARK IV, NIPS/FFS

No capability is provided.

TDMS

In both COMPOSE and QUERY, two statements are provided to generate
a special report which contains only information from the stored
form of the schema (or data definition). The first statement,
COMPONENTS, extracts item and group names and the associated num-
bers of each. The other is DESCRIBE and this extracts the type and
validation specifications. Each statement acts on a specified item,
group, or set of items and in both cases the report which is genera-
ted formats the output in such a way as to clarify the hierarchical
relationships.

281
287

www.manaraa.com

4-68

UL /l

A special division is used to generate a special report which con-
tains item schema information for selected items. This division is
called the Bookkeeping Division and the control word identifying it
is DESCRIBE.

It is possible to select any item, set of named items or contiguous
range of item numbers for inclusion in the report. For each item,
the following data is included - item =Tiber, name, type, group
membership, item description, maximum length, storage format of
items and storage format within record.

COBOL

No capability is provided.

SC -1

A system utility job may be used to print data base and data file
definitions. No facility is provided for selecting data about
specific items but any or all files may be selected control cards.
For every data item, the type, size, security level and indexing
mode (if any) are included. The capability applies not only to the
central data base definition but also to the data definitions used
in and by the application programs.

4.13 Mechanized files

The generation of sub-files from the master file is a capability
which falls into two classes, not necessarily mutually exclusive.
Either a file generated is for subsequent use by the system in the
same run or it is a means of communicating data to other processors
such as procedural language programs or special application programs.
It is also possible that a system makes no difference between these
two classes.

GIS

A procedure may involve up to 16 files, some of which may be HOLD
files or temporary files. These may be used as temporary storage
during the -nrocelsing of an interrogation (or update). Alterna-
tively the same kind of files may be saved by the operating system
for processing by another GIS procedure or by anothe:: processor.

MARK IV

Files may be generated for use outsiLe the system including for a
subsequent and separate use of the system itself. No facility is
provided for defining temporary use during the processing of an
interrogation.

282
288

www.manaraa.com

4-69

NIPS/FFS

The use of RASP implies generation of a file which may be used as a
data file or as input for QUIP or the Output Processor. Several of
these RASP produced intermediate files can be used as input for a
single Output Processor repo,-t. Tne Output Processor can be used
to specify and write files for use outside the system.

Files may be generated for use outside the system. There is no
capability to generate files for use by the system itself in a
later part of the same run.

COBOL

This capability is handled in the Procedure Division and is not a
feature of the Report Writer.

TDMS, SC-1

No capability in either class is provided.

4.13.1 Files for system's use

The specification of files for system's on use, here called inter-
mediate files, may be a user option or a user requirement depending
on the procedurality of the system. There is a distinction between
the user being required to specify the existence of an intermediate
file and the user explicitly specifying the way it is used in the
process of interrogating a master file. Specifying the existence
of a file may be a necessary requirement on the user or it may be
an option which allows him to influence the processing of a set of
interrogations by assigning more space.

If the user is involved in specifying the way intermediate files
are used in the processing of the master file, then again this may
be a necessary requirement or it might be an option which allows
him to influence what would otherwise be a default situation.

GIS

Depending on the nature of the processing the user may specify the
use of intermediate files called HOLD files (see 4.13). If a single
master file is being passed and one report generated, then no inter-
mediate file is required. If such a file is required, iGs data
structure is automatically defined without further user specifi-
cation.

283
289

www.manaraa.com

It-7.0

MARK IV

The user must specify temrorary files for use by +he OS/360 sort
only if sorting is indeed required in an interrogation.

NIPS/FFS

RASP produces a sequential file called a "Qualifying Record Table".
This file contains supplementary information such as the names of
stored Output Processor specifications and the identification of
repeating group instances that caused file entries to be retrieved.
This file, in conjunction with the retrieved data file, can be used
as input to the Output Processor.

TUNS

No capability is provided.

UL/1

The only capability by which the user can influence the processing
by specifying extra files is '.)y assigning tape overflow areas for
the sort. Sorting normally uses the standard disc wcrking area.
If ',Aais is inadequate and no more disc space can be assigned then
tape overflow areas may be used.

COBOL

See 4.13.

4.13.2 Files for use outside system

The specific Uon of files for uze outside the system, here referred
to as output les, is a capability which is provided to allow use
of the entry al 'ntra -entry selection facilities to generate input
to a program which performs a class of processing which cannot be
specified with the systemvs data extraction facilities.

Facilities for specifying output files can be as detailed as those
for generating reports. There is a set of capabilities which are
essentially independent of whether the data extracted is being
formatted in a report or in an output file. Such capabilities as
sorting (see 4.6.4) and the inclusion of data from the various
levels in the data structure (see 4.7 to 4.9.1) are essentially
independent. However the facilities for including summary data or
derived data (see 4.10 to 4.10.2) are usually reserved for reports.

Restricting consideration to formatting of the extracted data, it
is pointed out in the discussjon on generalized extraction features
(see 4.6.1) that the concept of system formatted and user formatted

284
290

www.manaraa.com

It-71

holds for output files as it does for reports. However, as in the
case of reports, there are also degrees of user and system involve-
ment in the formatting.

In the case of output files, the chief distinction between the two
is in the placement of items in the output files logical records.
Arrangement of logical records within or across physical blocks is
usually handled by the operating system, as is the assignment of
the output file to a media type.

GIS

No special provision is made for generating files for use outside
the system. All files are formatted according to OS/360 standards,
and may be used in any program which uses the same storage structure.

MARK IV

Up to ten output files can be specified for any one conditional
expression specified in a Processing and Record Selection form.
These files are system formatted and a special report is generated
indicating how the system performed the formatting. Each file is
formatted according to the operating system convention.

NIPS/FFS

The Output Processor can be used to generate variable length record
files for input to other programs. A FORMAT statement is used to
supply quantities such as file name, entry size and block sizes.
RECORDn statements are used in the same manner as LINEn statements
are for reports (see 4.11.2.1). OP conditional expressions
(see 4.3) can be used both to select the data items to be included
and to position them.

Punched card files are handled in a similar manner within a CARDn
statement being used like the LINEn statement for reports. In

addition, card files can use TITLECARD and FINALCARD statements
which cause punching of uzer specified first and last cards.

TDMS

No capability is provided.

UL/1

Output files may be either system formatted or user formatted. In

either case a file is designated as a COBOL file or a FORTRAN file
in view of the different sign conventions for numeric data which
are required by the two language processors.

In the case of a systems formatted output file, each physical record
contains exactly one logical record and records are also fixed
length.

285
291

www.manaraa.com

11-72

With user formatted output files, the user must declare a logical
record length which may be up to 7008 bytes. He may declare a
blocking factor to block the fixed length logical records into
physical records. He must specify a position in the logical record
for each quantity to he included. Entry level derived data is per-
mitted for inclusion in a logical record but not file level derived
data.

Whether the report is user formatted or systems formatted, a report
is generated indicating the format of the logical records in the
output file, the length of the logical records and the blocking
factor.

286

292

www.manaraa.com

5. UPDATE

Updating a data base is the process of using update data to change
values in all entries or selected entries, groups or items stored in
a data base. This does not include changing the logical data struc-
ture of a data base, the data base validation criteria or security
procedures. Within this framework, this chapter discusses the update
facilities found in GIS, Mark IV, NIPS/FFS, TDMS, UL/1 and SC -l. Of
the systems analyzed, these are the ones that provide generalized
update capabilities as contrasted with the host language systems
where the user programs his own updating. In the systems covered,
changes that alter the logical data structure are made by revising
or redefining the data deffnition of the data base (see 3.9).

The update function requires the use of five kinds of information.
These are:

a description of the part of the data in the data base that is
to be updated.

the data currently stored in the part of the data base to be
updated.

a description of the update data to be applied to the data base.

the update data.

the processing rules to be followed in applying the update data
to the data base.

To simplify the discussion in this chapter some terms will be used
arbitrarily to refer to these kinds of information. The updating
process can apply to data in several files in a data base, and hence
the description of that data will be found in file definitions of
several files. For convenience, however, this will be referred to
as the file definition. Some systems refer to the file being updated
as the master file. For brevity it will be referred to as the file
or the data file. The c.ata currently stored in the file will be
file data. The update data will be called transactions and its
description a transaction definition. The processing rules or algor-
ithms that apply a transaction to the data file will be called a
transaction program.

287
293

www.manaraa.com

5-2

An individual transaction is the data that triggers one execution of
a transaction program. When data is received via communication lines
a transaction may be a "message" in which the message type or part
of the message content triggers the execution of one or more trans-
action programs. When data is entered manually from a terminal,
tie transaction program to be used may be identified at the beginning
of the terminal session or its identification may be included in the
transaction. Both of these possibilities also exist in batch pro-
cessing where the transaction program may be defined or invoked at
the beginning of the batch. This invocation will then process a
series of update data records each of which is considered a transaction.
On the other hand, part of the data in each 1-,atched update data
record (i.e. transaction) may trigger the execution of 'Ale or more
different transaction programs.

The first two of these types of information are usually obtained from
other system functions. The file definition, which describes the
part of the data base to be updated, is the output of Data Definition
(see Chapter 3). The data currently in the data base results from
File Creation (see Chapter 6) and previous applications of the update
function or programming facilities (see Chapter 7). The remaining
three types of information are usually directly related to the update
function. Systems vary in the format in which each of these may or
must be supplied, the time at which they may or must be entered, the
acceptable input media for each, and the method used to bring them
together. Within a given system there may be more than one technique
available to the user for combining these kinds of information. The
Sources of update information shown in Figure 5-1 indicate the
general approech to combining these kinds of information taken by
each system.

In Figure 5-1 transaction definitions are the descriptions of trans-
action data that allow the system to find it and recognize its
attributes. Transaction programs specify the rules by which the
transactions (i.e. the update data) are applied to the data file. If
these are prestored, it means that in a separate run prior to the
update run they were stored in a form and on a medium that makes them
accessible to the system.

5.1 User update control

User control of file updating depends on the file and transaction
data definitions he can use or specify and the processing rules or
algorithms he can specify in transaction programs. The systems
studied, often provide more than one mode of updating that sets the
framework within which the user specifies the updating to be per-
formed. The update modes provided may differ in the language used,
the input media used or the amount of user control allowed. The
update modes available are specific to each system.

288
294

www.manaraa.com

5-3

SOURCE

SYSTEM

GIS
MARK

W NIPS TDMS UL/1 SC-1

BATCH PROCESSING MAY USE

PRESTORED
TRANSACTION DEFINITIONS
TRANSACTION PROGRAMS
TRANSACTIONS

AT THE BEGINNING OF THE
TRANSACTION STREAM

TRANSACTION DEFINITIONS
TRANSACTION PROGRAM

IN THE TRANSACTIONS
TRANSACTION DEFINITIONS
TRANSACTION PROGRAMS

yes
yes
yes

yes
yes

no
no

yes
yes
no

no
no

no
no

yes
yes
no

yes
yes

no
no

yes
yes
yes

no
no

no
no

no
no
yes

yes
yes

no
no

yes
yes
yes

no
no

no
no

REMOTE TERMINAL PROCESSING MAY
USE

PRESTORE
TRANSACTION DEFINITIONS
TRANSACTION PROGRAMS
TRANSACTIONS

AT THE BEGINNING OF TIE
TRANSACTION STREAM

TRANSACTION DEFINITIONS
TRANSACTION PROGRAMS

IN THE TRANSACTION
TRANSACTION DEFINITION
TRANSACTION PROGRAMS

yes
yes
yes

yes
yes

no
no

no
no
no

no
no

no
no

yes
yes
no

no
no

no
no

yes
no
no

no
yes

no
yes

no
no
- o

no
no

no
no

no
no
no

no
no

no
no

INPUT MEDIUM FOR TRANSACTIONS

PUNCHED CARDS

MAGNETIC TAPE

MANUALLY OPERATED
TERMINALS
COMMUNICATIONS LINES

yes

yes

yes
yes

yes

yes

no
no

yes

yes

yes
no

no

yes

yes
no

yes

yes

no
no

yes

yes.

no
no

Figure 5-1
Sources of update information

289
295

www.manaraa.com

5-4

GIS

Two modes of updating, UPDATE and MODIFY are distinguished by the
data structures to which they can apply changes. In the UPDATE
mode, transactions are described and equated with the file data.
In this mode update processing can be specified for any of the data
structures in the file. In the MODIFY mode, changes can only be
made to file items. The items to be changed are selected by the
use of interrogation type condition statements.

MARK IV

The user may request file updating on the Transaction Definition
Form and/or the Processing and Record Selection Form. The forms
are differentiated by the amount of user control allowed. The
Transaction Definition Form provides the maximum amount of automatic
processing by the system. The Processing and Record Selection Form
provides for the maximum user control over update processing. Where
the two forms differ, they will be (lescribed separately.

NIPS

The basic NIPS updating mode puts the transaction definition, the
transaction program, and the transactions into a batch input job
stream. There are three languages that can be used to write the
transaction program. There is an assembly type langluage with 81
operators, called POOL. Another update language is the Ordinary
Maintenance (OM) language which provides 9 keywords that can be
used to specify transaction validation and unconditional changes
of file items. The third language, the New File Maintenance
Language (NFL) is a high-level, English-like language. It has a
repertoire of 23 statements. Unlike OM, these statements can not
be mixed with POOL instructions. If a transaction definition and
the corresponding transaction program have been stored in the
"Logic Statement Library" part of the file to be updated, an
update run can be initiated and the transactions entered from a
terminal. This type of operation is called Source Data Automation
(SODA). Except for special situations where it seems useful to
include POOL or OM, this description will be confined to the New
File Maintenance Language (NFL).

TDMS

MAINTAIN and UPDATE, the two modes used to update a data base, differ
in the functions that can be performed and the input media used. The
MAINTAIN, or batch mode, requires the transactions to be submitted in
a batch job stream and converted into a TDMS structured file prior to
the execution of the update. Transaction programs are entered through
on-line terminals. This is the primary update mode and offers
features not available in UPDATE. A KEYS ARE clause is used to

290
296

www.manaraa.com

5-5

associate transactions and entries in the file, and a new file
results from processing the transactions. The second, or UPDATE,
mode allows for a transaction definition, a transaction program and
the transactions to be submitted on-line and interactively for a
dynamic update of a file.

UL/1

There are two modes called "selective" and "discrete" update. The
main difference between them is that in a "discrete" update the
user must suppl:r the entry identifier of each file entry to be
updated. In a "selective update,'' the criteria that an entry must
satisfy to qualify for updating must be specified by the user. The
criteria take the place of the entry identification required by the
"discrete" update mode. In either mode the user may define several
transaction types at the beginning of a use of the Update Division.
These may be invoked by name in the appropriate transactions as they.
occur later.

SC-1

The update facilities described in this chapter supplement programmer
facilities (see Chapter 7) that can be used to specify any data
processing. The update facilities use the auxiliary data definitions
for files (see Chapter 3). The transaction definitions and trans-
action programs are processed by a Page Builder program that creates
a file in which each entry defines a transaction and its processing.

Transactions may be introduced env,Fdoped by Message Description and
Validation Batch Control header and trailer cards.

As part of the transaction definition, the user can specify certain
validation criteria that can be checked without reference to the
data base. The transactions not rejected by the Message Discrimin-
ation and Validation job that applies these criteria are placed
in a transaction file. In a separately set up job, they are selected
from this file by transaction type or by transaction type and input
batch and sorted into file sequence. The user's prestored (i.e. by
"Page Builder") transaction program for each transaction type is then
used to process each transaction.

An alternate "pipe line" mode is used to completely process one trans-
action before obtaining another one. This eliminates the use of the
intermediate transaction file.

291
297

www.manaraa.com

5-6

5.2 Data description

5.2.1 Transaction definition

A variety of techniques are used to supply transaction definitions
to systems. Sometimes the format and type of transaction that is
acceptable to the system is prescribed. In other cases, any type
of transaction is acceptable if its transaction definition had been
previously stored so the system has access to it. Another technique
is to provide a language capability that allows transactions to be
submitted to the system in a self-describing form so that the
transaction and its definition are intermingled. On the other hand,
strict separation of transaction definition and transaction can be
found in systems that use the same input medium for both, but require
the transaction definition to precede the transaction. The variety
of techniques used in transaction definition is not limited to the
time and method or its presentation but includes the conventions
used to name transaction entries, groups, and items, to identify
the corresponding:data element in the file, to describe item types
(i.e. binary, alPnanumeric, etc.) on the update input medium, etc.

GIS

Both update modes may use transactions from "system" or "hold" files.
In the UPDATE mode, transactions may also be taken from a "mulrec"
file. "System" and "mulrec" files, are defined in a Data Description
Table that is created at file definition time (see Chapter 3). A
"hold" file is a temporary file that is implicitly defined by the
HOLD statement (see 4.1.2) in the interrogation that created it.

MARK IV

Before an update run is initiated, both the file to be updated and
the transactions must be described by the user filling in File
Definition and Transaction Definition forms and submitting them for
processing so they can be entered in the MARK IV "dictionary". The
definition of the transaction file may include more than one trans-
action format. If the Processing and Record Selection facility is
to be used in conjunction with the Transaction Definition Form, the
transaction file must also be described on the File Definition form.

Each transaction format defined is identified by a Transaction
Identifier. No changes in these definitions can be made during
an update run. Processing and Record Selection logic, however,
can be used to change dynamically the format and/or identifier
of a transaction to make it fit an existing definition.

292
298

www.manaraa.com

5-7

NIPS

The file to be updated is defined in a File Format Table that is
created at file definition time from information specified by the
user (see Chapter 3). A transaction program is made up of Logic
Statements. A Logic Statement may contain both the Transaction
Descriptor Cards that specify transaction format and/or the rules
by which the transaction is to be applied to the file. There can
be a Transaction Descriptor Card for each item in the transaction.
It gives the name of the item, its location in the transaction,
its data mode (i.e. alphabetic, binary, coordinate, or slphanumeric
EBCDIC), and entry and group identification. A separate "Logic
Statement" is necessary for each different type of transaction
format to be processed during a run.

Ordinary Maintenance Transaction Descriptor Cards provide for
checking through the PICTURE, VALUE, RANGE and VERIFY statements.
In the PICTURE statement, the user specifies whether the character
is alphabetic, numeric, blank, non-blank, special, not special (i.e.
alphanumeric) or anything by a code.

The VALUE statement allows the user to specify up to 10 values that
are acceptable data values for an alphanumeric or decimal item.
Likewise, the RANGE statement allows the user to specify up to 10
ranges within which acceptable data values for an item must fall.
The VERIFY statement permits the user to give the name of one
subroutine or table that will be called to check the validity of
data supplied for a data item.

TDMS

An UPDATE transaction is defined in narrative form as shown in the
following typical example.

SET EMPLOYEE NUMBER EQ 1000, SALARY EQ 15000 WHERE EMPLOYEE
NAME EQ SMITH.

SET is the system command to affect a change to the value content
of file data. In this case, Smith's EMPLOYEE NUMBER and SALARY
will be changed to 1000 and 15000 respectively. The WHERE con-
ditional expression selects the file entries to be changed.

When the MAINTAIN facility is used, transactions are placed in a
separate TDMS structuref file that was previously defined in the
same manner as any other. TDMS file.

Transaction definitions may be specified at the beginning of a batch
of transactions. The transaction definition is considered "temporary"

:293
299

www.manaraa.com

5-8

and must be re-entered if needed again in a later run. In both
update modes, two methods of transaction definition can be used.

A transaction is defined in narrative form as shown in the following
example of a Selective Update:

SELECTIVE UPDATE
SALARY EQ 1500, AND EMPLOYEE SMITH EQ
MODIFY RECORD
EMPNO REPLACE WITH 1000

where REPLACE is a system command that will change the value of a
file item.

A transaction may be defined as a special case of a "macro" as
shown in the following example of a Discrete Update

MACRO &TRANS (&PARAM1, &PARAM2)

MODIFY RECORD &PARAM1

SALARY REPLACE WITH &PARAM2 * MEND

where PARAM1 is the entry identifier, and PARAM2 is the new value
for SALARY.

Transactions using this generalized macro would take the following
form:

&TRANS (76328, 18000)

&TRANS (82571, 16000)

SC-1

A fixed format tabular transaction definition with one data element
per line is used. Before updating can take place, this transaction
definition must be processed and prestored in a "page" by a Page
Builder run.

On the Transaction Definition Form, the first three characters of
each line must be a unique alphanumeric transaction type identifier.
This is followed by a for character Tag which is an identifier
code that can be used in place of the name being defined. The next
two digits are level numbers like those used in COBOL. They define
the data structure of the transaction. This is followed by a one
character Type Code that indicates the kind of data element being
named on the line. For items, the code identifies the item type
as alphanumeric, decimal integer, binary integer, floating point,
or a file data name. Codes also identify non-repeating groups

24
300

www.manaraa.com

5-9

(i.e. SC-1 "statements"), repeating groups, and files.

The Size of the transaction data element defined follows the Type
Code. The Size of an item is the number of characters it contains.
For non-repeating groups, it is the number of items and groups, and
for repeating groups or files it is the number of group instances.
If the number can not be stated exactly, a V is used, and the user
specifies the delimiting characters used in transactions that indicate
the end of items, transactions and files in his transaction program.

On the transaction definition form the name of the data element
follows its size. The names must start with a letter, contain no
more than 31 characters and not use a hyphen as the last character.

Four types of item validation are provided as part of transaction
definition. The Type Check validation checks a transaction item
to see if it is consistent with one or a specified combination of
the system defined character sets (i.e. A through Z, blanks, zero
through 9, hyphen, plus or minus, or period). This check may also
include a check on any user character sets defined by the ALPHABET
statement.

Two restrictions may be placed on the Type Check. The word MUST
means that null values (i.e. blanks for alphanumeric items and zeroes
for packed decimal, floating point, binary integers or bit strings)
are not acceptable, and an integer placed in front of the Type Code
limits the checking to the specified number of characters.

The Value Check checks to see that values submitted eqial a literal
either numeric or alphanumeric, a transaction item value, or an
arithmetic expression made up of these. Acceptable multiple values
may be specified by joining tl:mm with OR's or ranges may be stated
by giving the inclusive :limits joined by a TO. Numeric values are
compared on an arithmetic basis and alphanumeric values are compared
character by character using the collating sequence if necessary.

The Total Check specifies the transaction item which when summed
should total to the defined item.

The Test Check evaluates a Boolean expression. If a Boolean
condition is used, the condition may use the names or identifier
codes of transaction items, data item names, literals, arithmetic
operators, the relational operators (see 5.3.4), and the logical
connectors AND and OR. An expression starts with an item name,
followed by a relational operator and is followed by a conditional
expression containing literals and/or the names or identifier
codes of transaction items that will reduce to a single value at
execution time.

295.
301

www.manaraa.com

5-10

An error action can also be set up for each validation check
specified. These error actions are reject the transaction, continue
checking but do not place it in the accepted transaction file,
issue an error message, ignore the error. If error messages are
specified, a code may be supplied that causes the corresponding
message in the SC-1 Error Surveillance Message Catalogue to be
printed. If the user specifies no error action, the entire trans-
action is checked against its definition, and if any error is found
the transaction is not put in the accepted transaction file.

These transaction data definitions must be preceeded by a fixed
format message header statement containing a transaction type code,
the date, version number, number of sheets, number of days this
type of transaction is to be held in a back-up file, transaction
name, definer's name, definer's organization code and definer's
telephone number. The transaction definitions are also supplemented
by two statements specified as part of the transaction program that
perform transaction definition functions. One is the ALPHABET
statement that allows the user to define his own character set for
Type Code checking. It has the following form:

ALPHABET type-code ci [c2]

The type-code is a one character code that is different from those
assigned by the system, and the ci's are the acceptable characters
for this Type Code.

5.2.2 Files used

Descriptions for both the file that is to be changed and the
transactions with which it is to be changed must exist or be
implied before updating can take place. In the systems analyzed,
the description of the file to be updated was stored at data
definition time (see Chapter 3) and is available to the system.
In the systems studies, even the systems that provide for updating
null files, assume that the system's file definition process has
already been performed for the file that is to be updated.

In data base management systems the need exists for many kinds of
multiple file operations. Systems may allow the transactions to
be entered into two or more files in a data base, or they may allow
values computed from transactions to be entered into more than one
file. In addition to using a transaction file to change data in
two or more data base files, it is sometimes necessary to use data
from two or more transaction files to update a single data base file.
When this condition is complicated by the transactions being on
files foreign to the system, it may be necessary to provide an
assembly language preprocessor to convert the foreign files to an
acceptable system transaction file.

296
302

www.manaraa.com

5-11

GIS

A maximum of 16 files may be used in a single MODIFY "subprocedure".
The transaction files may be "system" or "hold" files, but the data
files to be updated must be "system" files. In an UPDATE subprocedure,
a single "system" file is updated from a single transaction file. The
transaction file may be a "system", "hold" or "mulrec" file.

MARK IV

When the Transaction Definition Form is used, only one transaction
file can be used to update one data base file.

When Processing and Record Selection is used, one data base file can
be updated by using one transaction file and information from one
to nine other data base (i.e. "coordinated:) files.

When the two modes are combined, the user can specify processing
that will update any or all of the "coordinated" files.

The opening of files is performed by the OS/360 operating system.
File parameters such as blocking factors entered on MARK IV forms
override any conflicting parameters in OS/360 Job Control Statements.

NIPS

Only one transaction file can be applied to one data base file at
a time. Information from the transaction file and the data base
file can be written out on up to five "auxiliary" files. The data
file is opened by placing its name in the File Maintenance Control
Caxd.

TDMS

In UPDATE, transactions update an in place data base file. In
MAINTAIN, the transaction file is converted to a TDMS structured
data base file prior to execution of the update. In this mode,
a new data base file is produced as output. The opening of files
is performed by the ADEPT operating system. When the opening has
been completed, TDMS supplies the TDMS name of the file to the
user.

UL /l

Only one transaction file can be applied to one data file at a time.
Files are opened by being named in the UPDATE statement.

303

www.manaraa.com

5-12

SC-1

The user must open each data base file to be used in the update
run with a TAP statement as follows:

[

[INPUT 1

I

TAP-identifier file-name UPDATE! ;

The INPUT option indicates the file is opened for reading only.
UPDATE allows changes to be made in the file.

Transactions must be sorted in the same order as the file to be
updated. The user indicates the correspondence between transaction
and file sort keys by:

SPECIFY-TARGETS [(file-name) trans-item data-itemd ...]

Core buffers may be established for groups from as many data base
files as core capacity allows.

All transactions are prestored in a transaction file. Transactions
are entered into this file either individually or in batches.

In a single update run the user may process as many types of
transactions as may be sorted on the same items. For such trans-
action types, the user may ask for the processing of all transactions
of a type or for specifically identified batches.

5.3 Transaction program definition

Both the format and the content of transaction programs varies
widely among the systems analyzed.

5.3.1 Transaction program format

The formats used include fixed tabular forms, narrative form, and
computer procedural language forms. Sometimes more than one form
will be used in a system.

GIS

In both UPDATE and MODIFY, transaction programs are written in
narrative form, punched into cards, and read into the system. The
transaction definition must have been entered into the system
previously.

298
Nit

www.manaraa.com

5-13

MARK IV

When either the Transaction Definition Form or the Process;mg and
Record Selection Form is used, the transaction definition and trans-
action program specification are combined on a single tabular form.

NIPS/FFS

The Logic Statement is prepared on punched cards. If transactions
are used in tie ul,date, the Transaction Description Cards are
placed at the beginning of the Logic Statement. The New File
Maintenance Language statements that specify the update processing
follow the Transaction Descriptor Cards.

TDMS

In the UPDATE mode, the transaction program is combined with the
transaction definition and the update data in a narrative form.
(see 5.2.1)

In MAINTAIN the transaction program is entered from a terminal
as in the following example:

KEYS ARE EMPLOYEE NAME

SET EMPLOYEE NUMBER = NEW EMPLOYE NUMBER

SET SALARY = NEW SALARY

In this case all employees having entries in the transaction file
will get new employee numbers and salaries if such data is supplied
by a transaction.

UL /l

A narrative form of transaction definition is used. It includ's
both the transaction program and the update date (see 5.2.1).

When the "marco" transaction definition is used, the transaction
program is usually included in the "macro" definition and the data
is provided as parameters when the "marco" is invoked.

SC-1

The Message Processing Language statements in which the transaction
program is specified are punched on cards. They are preceded by a
fixed format Processing Header statement.

299
305

www.manaraa.com

5-14

5.3.2 Data mapping

Some method is needed to equate transaction group and item names to
the file group and item names to which they correspond or are related.
One method is to use file group and item names in the transaction
description for corresponding data elements. This may not be possible
when data files, created for other purposes, are used as transactions
or when the relation between transaction and file data elements is
indirect.

GIS

In UPDATE the correspondence between file and transaction groups is
established in the transaction program by a STRUCTURE statement
which has the following form:

STRUCTURE file-group-name FROM transaction-group-name

The correspondence between transaction and file items is established
by the EQUATE statement which takes the following form:

EQUATE

file-name TO transaction-name

[file-name TO transaction-name]

END EQUATE

If a transaction item name is not included in this list, it is
automatically equated to a like named item in the file unless the
like named file item has been excluded by an EXCEPT statement of
the following form:

EXCEPT file-item-name [,file-item-name]

In MODIFY the mapping is programmed by the user. Item correspondence
is obtained by the CHANGE statement (see 5.3.5.3) and computational
statements.

MARK IV

Item mapping is obtained by using file item and group names on the
Transaction Definition Form or the Processing and Record Selection
Form.

300
306

www.manaraa.com

5-15

NIPS/FFS

For Ordinary Maintenance (OM), transaction items are mapped into
file items by using file item names on the Transaction Descriptor
cards.

When using the New File Maintenance Language (NFL), transaction
items and groups are mapped into the data file by MOVE, ATTACH,
or COMPUTE statements (see 5.3.5.3).

TDMS

Transaction items and groups are mapped into the data file names by
using the file names in the transaction definition.

Transaction item and group names must be mapped into the data file
names by using the file item names and, for multiple valued items,
the ordinal position of the desired value in the transaction definition.

SC-1

Except for file sequencers (see 5.2.2) the user equates transaction
items with file items by SET statements (see 5.3.5.1) in his
transaction program that move the transaction item value, modified by
an arithmetic expression if desired, to the file buffer area.

5.3.3 User control over data access

The amount of user control over data access varies. The accessing of
transactions and the file entries with matching identifiers may be
done automatically with no user specification. Systems that provide
this type of automatic transaction and entry access usually also
automatically write out the updated entries. On the other hand, the
user may be given complete control over data access by being required
to specify each step of the data access process. This may include
instructions for individually reading each group contained in a
transaction from the input medium. Similarly, the user may be
required to locate, read and after the update processing has been
performed, write out the entries by using instructions that operate
on data elements below the entry level.

GIS

In UPDATE, transactions are retrieved by the system as needed. File
entries and groups are retrieved on the basis of matching identifiers
and returned by the system when update processing is complete.

301
307

www.manaraa.com

5-16

In MODIFY, the user programs transaction and file entry and group
retrieval and selection using the same statements used for interro-
gation (see 4.3). For example, the following statements will add
one to the age of all males in the personnel file called PERSFILE.

MODIFY PERSFILE
LOCATE PERSON
WHEN SEX = 'M'
INCREASE AGE BY 1
EXHAUST PERSON
END PROCEDURE

MARK IV

Transactions are retrieved automatically. When the Transaction
Definition Form is used, transactions are automatically matched to
file entries on the basis of entry and group identifiers. When the
Processing and Record Selection Form is used, each file entry is
automatically retrieved and checked for conforming to update con-
ditions. In both cases, if an indexed sequential file is being
updated, only the changed entries are automatically written out to
the file. If a sequential file is being updated, all file entries,
whether or not they were changed, are written out to a new file.

NIPS/FFS

When OM is used, transactions are retrieved automatically. File
entries and groups with matching identifiers are retrieved and
returned automatically.

When NFL is used, the principal items of an entry (i.e. "fixed set")
are retrieved if the file contains an entry with an identifier that
matches the transaction identifier. Groups are retrieved through
the execution of one of the following types of statements:

LOCATE SET operand, EXIT label

STEP SET operand, EXIT label

The LOCATE statement retrieves the first instance of the repeating
group containing the operand. STEP retrieves the next instance
of the repeating group containing the operand. In all group
retrieval statements, the exit is taken if no instances of the
group exist or if all of them have been retrieved.

302

308

www.manaraa.com

5 -17

[TO] FIRST)

POSITION [T0] NEXT operand, FAIT label

[AFTER] LAST

or POSITION [TO] operandl [IN] operand2, EXIT label

For the FIRST and NEXT options, the indicated instance of the
repeating group containing the operand is retrieved. For the LAST
option the EXIT is ignored, and the next action for the group will
take place after the last instance of the group. An appropriate
action might be the insertion of an additional instance of the
group or the deletion of all instances of the group.

The second POSITION statement selects an instance of a repeating
group in which operandl and operand2 are equal. The "fixed set"
and all instances of groups are automatically returned to the file
at the completion of their processing.

TDMS

In UPDATE, transactions are read automatically from a manually
operated terminal. File entries are retrieved automatically on the
basis of matching identifiers. Before releasing an updated entry
to the system, a user may request a variety of information, such as
the actual number of changed values, to assure himself that the
updated entry should be put in the file.

MAINTAIN writes a new file using transactions, that have been put
into a TDMS structured file, and another TDMS data file as input.
All file reading and writing is done automatically.

ULA

All transactions, data file entries and groups are retrieved
automatically. Changed entries and groups are returned to the
file automatically.

SC-1

The GET statement is used to retriave each repeating group instance
at each data structure level required for the transaction processing.
Separate GET statement, are used to retrieve group instances from
the transaction and from the data file. The syntax of the GET
statement is:

303
309

www.manaraa.com

5-18

entry -namel
GET group-name

IN file-name [WITH conditional-expression]

[EOF [error-message-code] [error-action-code]

[SKIPTO label d;

The entry-name option retrieves the principal items of the entry.
A GET statement without a WITH conditional expression puts the
next sequential group from the file into a buffer area in which
other SC-1 statements may operate on it. When the WITH conditional
expression is inc:uded, the next group that meets its condition
is put in the buffer.

To facilitate the retrieval and processing of groups from transactions
the following loop control statements are provided:

label DO transaction-group-name;

ENDDO label;

5.3.4 Update data selection

Data selection is the identification by the user of the part of
the file that is to be changed by a transaction. The most general
way in which this can be done is to state the logical relations
that must be satisfied before a transaction is applied to the file.
In recognition of this, the same language used to specify conditional
expressions in the interrogation function (see 4.3) may be used to
specify the criteria.

A second method is for the system to match the transaction to the
file on entry and, if necessary, group identifiers. When the
identifiers match, the specified processing is performed with no
further need for the user to specify data selection criteria.

The third method acts on all file data. An example of this type
of updating can be as simple as adding one to the current year for
every entry in the file. On the other hand, it may apply the same
complex transaction to all file entries. End of year accounting
changes can be of this type. Sometimes these changes are applied
not to all the entries in the file, but to those entries selected
by one of the previous methods.

304
310

www.manaraa.com

5-.19

GIS

In the UPDATE mode, transactions are matched with the file on the
basis of entry or group identifiers. Further selection conditions
based on data content and relationships in both the transaction
and the file can be imposed by using the IF, ELSE and IN ANY CASE
statements. These statements take the form:

IF conditional-expression

statement-group-1

ELSE

statement-group-2

IN ANY CASE

In the MODIFY mode, the user specifies the conditions for data
selection by using the same statements used for interrogation
(see 4.3).

MARK IV

When the Transaction Definition Form is used, the system selects
the file entries and groups that match the transactions on the items
that have an M action code. If the Processing and Record Selection
Form is also used, its conditions are applied to the entries or
groups selected by the Transaction Definition Form. When the Pro-
cessing and Record Selection Form is used alone, selection is
performed in the same way it is for interrogation (see 4.3).

NIPS/FFS

When using OM, the system selects file entries and groups that
match transactions on the transaction items the user has
identified as corresponding to the file identifiers.

When NFL is used, the IF statement can be used to select file entries
and groups to be updated. The IF statement has the following
general syntax:

311

www.manaraa.com

5-20

IF operandl operator operand2 [,operand3]

The operators are:

EQ
NE These 3 operators may be followed by
BETWEEN multiple operands

NOT LT
GT
LE

T
GE

[PICTURE) [NOT]
BIT

The following IF test statements may also be used:

IF operand [BIT] NOTi
ON
lOFFl

IF [NOT] NEW RECORD

IF OVERFLOW [NOT] r0111,11

TDMS

The conditional expression that is used in the interrogation function
(see 4.3) is used in both UPDATE and MAINTAIN to select data from the
file. An additional clause is available in the MAINTAIN mode. KEYS
ABE allows the user to give up to three items in each file that are
used as identifiers for matching transactions and file entries. In

this mode the WHERE conditional expression is secondary to the
identifier and is used to refine the selection.

UL /l

In "selective" updating, the user must give the "update criterion"
using the same form of conditional expression as is used in interro-
gation (see 4.3).

For "discrete" updating, the user must give the value or values of
the identifier of an entry to be modified or deleted.

306
312

www.manaraa.com

5-21

SC-1

The WITH conditional expression of the GET statement (see 5.3.3)
is used to select file groups to be updated. The syntax of the WITH
clause is:

WITH relationl [(AND1 relation] ...
(OR

where relationi is:

literal
operandl IN file-name operator operand2

operandi

Acceptable operators are EQ, NE, GE, GT, LE, and LT. Operands 1
and 3 are the names of items in the file. Operand2 is the name of
a transaction item.

3.5 Data base changes

What the user can change in a data base and how he specifies it,
varies. Figures 5-2 through 5-4 show the names of system facilities
that perform several kinds of data base changes in the systems
studies. A "none" in these tables indicates that the system pro-
vides no special facility to perform the function. In Figures 5-2
through 5-4, each system is looked at from the user's point of view
in terms of what he can do using the facilities provided by the
system in the way they were intended to be used. In Figures 5-2
and 5-3 entries and groups are considered inserted only when, from
the user's point of view, data at these levels has been put into the
file using system facilities designed for that purpose and can now
be retrieved and changed. For groups and entries it means that
group and entry instances with previously unused identifier values
are now available to the user. Likewise the deletion of instances
of groups or entries means that, using the facilities of the system
the file has been changed so that the user no longer has access to
groups or entries with identifier values that he previously could
use. Some systems allow the user to change the values of items used
as group and entry identifiers. In sequential files, this usually
requires changing the position of entries on the storage medium.
Systems vary with respect to the need to change the physical location
of a group under such circumstances. For other types of files, it
may require changing both the position on the storage medium and
the indexes for the file so it will reflect the new identification
of the group or entry.

Entry and group replacement are not covered in Figures 5-2 and 5-3.
They are dealt with as entry and group level changes (see 5.3.5.1 and

307
313

www.manaraa.com

5-22

SYSTEM SYSTEM FACILITY
DATA CHANGE OPERATORS FOR ENTRIES

INSERT DELETE
1 DENTI FIER

CHANGES

GIS UPDATE INSERT DELETE none
STORE REMOVE
INCLUDE
INCLUDEF

MODIFY none none none

MARK IV Transaction C D R, P
Definition "record" "record" "record"
Form action code action code action code

Processing
and Record
Selection
Form

none System
DELETE
flag is
set

NIPS New File Maintenance 2 DELETE MOVE
(An English-like

language)

RECORD

POOL 2 DDR MCI'
(An assembly
type language)

MCW

Ordinary Maintenance GENERATE none none
Language
(Control card key-words)

TDMS UPDATE and MAINTAIN ADD REMOVE none

UL/1 DISCRETE INSERT DELETE none

SELECTIVE none DELETE none

SC-1 SET's
followed by

GET
followed by

none

ADD or DELETE
INSERT

'This is equivalent to the COBOL MOVE.
2Entry insertion is automatic if the transaction identifier does not match on entry identifier in the file.

Figure 5-2
Entry level data change operators

314

3081

www.manaraa.com

5-L3

SYSTEM SYSTEM FACILITY
DATA CHANGE OPERATORS FOR GROUPS

INSERT DELETE
IDENTIFIER
CHANGES

GIS UPDATE INSERT DELETE none
STORE REMOVE
INCLUDE
INCLUDEF
APPEND

MODIFY none none none

MARK IV Transaction I "segment" E "segment" none
Definition action code action code
Form

Processing
and Record
Selection
Form

none System
DELETE
flag is
set

RI

NIPS New File BUILD DELETE SET MOVE
Maintenance SUBS ET2 DELETE
Language SUBSET
(An English-like
language)

POOL BSS2 DS II MCS
(An assembly
type
language)

DSC

Ordinary GENERATE MAW MAW
Maintenance
Language
(Control
card
key-words)

'DMS UPDATE
and

ADD REMOVE. none

MAINTAIN

UL/1 DISCRETE none3 DELETE none

SELECTIVE none DELETE none

SC-1 SET's
followed by

GET
followed by

none

ADD or DELETE
INSERT

1This is equivalent to COBOL MOVE.
2This sets up an empty group. Data is inserted by item level changes.
3Accomplished by inserting component items.

Figure 5-3
Group level data change operators

315

309

www.manaraa.com

5-24

SYSTEM SYSTEM FACILITY
DATA CHANGE OPERATORS FOR ITEMS

INSERT DELETE
VALUE

CHANGES

GIS UPDATE INCLUDEF ERASE INCLUDE
REPLACE REPLACE
REPLACEF REPLACEF
CHANGE CHANGE

INCREASE
DECREASE
MULTIPLY
DIVIDE

MODIFY CHANGE ERASE CHANGE
[NCR EASE
DECREASE
MULTIPLY
DIVIDE

MARK IV Transaction none none P, R, 8, A, cur
Definition
Form

S "field" actiun
code

Processing
and Record

none none R, +, , +, /

Selection
Form

NIPS New File Maintenance ATTACH DELETE MOVE
Language FIELDI COMPUTE
(An English-like language)

POOL
(An asse, -ibly type language)

MVF CLR 1
CVF 1

MA I.; MN U,
MAC, MNC,
ADD, SUB,
MPY, DVI),
GENERATE

Ordinary Maintenance none none GENERATE
Language
(Control card keywords)

TDMS UPDATE and MAINTAIN SET FAILS SET

UL/ 1 DISCRETE INSERT DELETE REP LACE

SELECTIVE INSERT DELETE REPLACE

SC-1 none GET
followed by

GET
followed by

SET TO NULL
and

SET
and

REPLACE REPLACE

IVariable length items are physically removed. Fixed length items are set to null values.

Figure 5-4

Item level data change operators

316

310. -""

www.manaraa.com

5-25

5.3.5.2) where the discussion points out that in many case they

are really successive applications of deletion and insertion. In

Figure 5-4, although items are always a part of an entry, or a group

or of both, changes in item values, except for changes in the value

of group and entry identifiers, which are treated separately,

are considered item level changes. Some systems provide a special

representation for null value items. In Figure 5-4, an item is

considered inserted when it is changed from the system's null value

to a data value. An item is considered deleted when it is changed

from a data value to the system's null value. If the user must set

up his own data coding scheme to provide for null values for items,

Figure 5-4 does not show this as a system capability for item

insertion and deletion.

5.3.5.1 Entry level changes

Entry level changes imply transactions that take into account all

the data in a file entry. An entry level change can be a transaction

that identifies an entry to be removed from the file. When such a

transaction is processed, it will no longer be possible for a user

to retrieve or update any items or groups associated with this entry.

When a transaction inserts a new entry, the user has access to an

entry identifier not previously available to him from which he can

now retrieve data and against which he can now process additional

updates. In some systems entry level changes require transactions

that contain complete entry level data for an entry identification

that is already in the file. This may be processed by deleting the

entry in the file and adding the entry from the transaction. It is

also possible to use transaction entry data to change the file entry

only where it differs from that found in the transaction, to change

only null-valued file items from the corresponding transaction values,

or to replace file values with all nonnull transaction values.

GIS

There are three statements that can be used to insert entries into

a file.

INSERT
STORE data-file-entry-name;

INCLUDE

When there is no matching entry identifier, all three statements

insert the transaction as an entry. The insertion includes a31

the subordinate groups contained in the transaction. When there is

a matching entry identifier, STORE and INCLUDE will insert subordinate

groups for which, there are no matching groups in the matching file

entry. For INSERT, the existence of a matching entry identifier

produces an error condition and no updating takes place. No updating

317

311

www.manaraa.com

5-26

also takes place, but with no error indication, when the STORE
statement is used with a transaction in which the entry and all
group identifiers match.

Entry level changes can be made by two statements.

[REPLACEINCLUDE)
data-file-entry-name;

INCLUDE will replace file entries and subordinate groups with the
transaction containing matching entry and group identifiers. Un-
matched subordinate groups will remain in the file. The entire
file entry and all subordinate groups are removed when a REPLACE
statement is used with a transaction that has a matching entry
identifier. The transaction with whatever subordinate groups it
may include is entered into the file.

Entries may be deleted by using

[DELETE)
data-file-entry-name;REMOVE

Either statement deletes the entry and all its subordinate groups.
REMOVE and DELETE differ only in that DELETE produces an error
message in case the entry is not in the file.

MARK IV

New entries can be inserted in the file being updated if a "create
transaction" action code is put on the Transaction Definition Form.
If this has not been done, transactions that do not match an entry
in the file will normally be rejected. If requested by the user,
rejected transactions will be written on a "transaction reject file"
that can be printed or otherwise processed after the completion of
the update run. This normal rejection of unmatched transactions
can be overridden if the user indicates he wants the DEFAULT CREATE
option on the Transaction Definition Form. When this is done, an
unmatched transaction of this type, creates a new file entry with
the minimum storage space required by the File Definition Form. If
the "default create" occurs as the result of a transaction that
updates a lower level group, the parent group is also created with
null values for its data items.

On the Transaction Definition Form, a file entry may be deleted if
the delete operator, D, is used as the "action code" for the type of
transaction that is to initiate the deletion. In Processing and
Record Selection, a delete flag can be set for each file, the
deletion takes place as the new copy of the file is written. In
indexed sequential files, a logical record delete byte is set.

318

312

www.manaraa.com

5-27

NIPS

When a transaction identifier that does not match a file entry is
encountered, the transaction is automatically added to the file.
At this time a "new record" flag is set. Its existence can be
tested by the NFL conditional expression IF NEW RECORD. Entries

can be deleted with a DELETE RECORD statement.

TDMS

ADD ENTRY and REMOVE ENTRY statements are available in both the
MAINTAIN and UPDATE facilities. In both facilities when an entry
is to be removed, the REMOVE ENTRY statement will contain a WHERE
conditional expression that supplies the identifier of the entry
to be removed. In UPDATE, the ADD ENTRY statement is followed by
the data for the new entry.

MAINTAIN writes a new file using transactions that have been put into
a TDMS structured file and a TDMS data file as input. For those
entries in the transaction file for which there is no entry in the
data file with matching identifiers, the ADD ENTRY statements in
the transaction program specify how the transaction is to be put
into the new file written by MAINTAIN.

UL /l

The statement for inserting an entry using "discrete" updating is
shown in the following example:

UPDATE filenamel, filename2 DISCRETE UPDATE INSERT RECORD
complete-entry-data *

The statement for deleting an entry using "discrete" updating is
shown in the following example:

DELETE RECORD 23641

The statements for deleting an entry using "selective" updating are
shown in the following example:

UPDATE CRITERION SEX Eq FEMALE *

DELETE RECORD *

SC-1

When adding a new group at the end of a file or inserting a new
group, the new group must be built with a series of SET statements
in a buffer area. The buffer area can be thought of as similar to
a COBOL record area.

319

A .9

www.manaraa.com

5-28

The SET statement syntax is ['
SET file-item-name IN file-name

expression ;

NULL

The expression is an arithmetic expression that may use both file
and transaction item names as variables. The expression may, in
effect, equate transaction item names with file item names. After
it is built, such a group is added at the end of a file with

ADD entry-name TN file

To correctly insert a group in a file, the file must first be
properly positioned by using a GET statement (see 5.3.3) to put
the group that is to follow the new group in the file's buffer
area. The new group is then inserted with

INSERT entry-name IN file

To delete a group, the group is first retrieved and put in a buffer
area with a GET statement (see 5.3.3). It is then deleted with

DELETE entry-name IN file

5.3.5.2 Group level changes

Group level changes imply a transaction that takes cognizance of all
the items or subordinate groups within a group As with entries, a
group level transaction may supply only the identification of a
group that is to be deleted. Once such a transaction is processed,
the user can no longer retrieve data from nor update data in this
group or its subordinate groups. A group level change may insert
a group in an entry. When it is processed, it makes available to
the user group, which was previously not available to him, from
which he may now retrieve data or in which he may update data.
As with entry level changes, some systems will process group level
transactions that contain identifiers that match the identifier of
a group already in the file. It is also possible to treat such a
transaction as a simple deletion of the file group and insertion
of the transaction group. In other cases the processing of
replacement groups may be as complex as that described for entries.

GIS

All the statements that operate at the entry level also operate
at the group level. The handling of higher level and subordinate
groupl in INSERT, STORE, INCLUDE, and REPLACE has different
implications for groups than for entries. For instance, INSERT
and STORE will insert missing higher level group identifiers.

320

314

www.manaraa.com

5-29

Since STORE leaves file groups unchanged when it is used with a
transacLion that has matching identifiers, IL can be used at a
high group level to insert groups at lower levels while leaving
existing file groups unchanged. INCLUDE, on the other hand,
replaces matching groups, inserts subordinate unmatched transaction
groups and leaves unmatched subordinate file groups in the file.
REPLACE deletes all file groups subordinate to the matching group
and inserts the transaction group with any accompanying subordinate
groups. If this is applied at two different hierarchical levels,
an entry with an incomplete hierarchy can be created.

MARK IV

Groups may be inserted in fixed length entries if, at file
definition time, an empty group of the type to be inserted was
created and if during a previous dictionary maintenance run an
insert group transaction was defined by putting an "insert" or
"default insert action code" on a group Transaction Definition.
If a group is defined for insertion of variable length data file
entries, MARK IV will enlarge the entry to accomodate the new
group.

Any group whose identifier is matched by a "deleting" transaction
may be deleted when using the Transaction Definition Form. Groups
may also be deleted when using Processing and Record Selection
by setting the system "delete flag". Groups may not, however, be
inserted when Processing and Record Selection is used alone, but
may be inserted when the two forms are combined. Identifiers may
be changed with either the "replace" or arithmetic operators when
using Processing and Record Selection.

NIPS

The statement

BUILD SUBSET operand

creates an instance of a repeating group (i.e. "SUBSET") preceding
the currently active group instance. Subsequent group instances
are pushed down. If the repeating group is not active, the new
group is added at the end. This statement creates the space
and activates the new group instance. No data is moved into the
new group instance. This is done with item level statements.
Repeating groups are deleted by

DELETE SET operand

Instances of repeating groups are deleted by

DELETE SUBSET operand

321

315

www.manaraa.com

5-30

TDMS

Repeating groups are added or removed a group instaftce at a time
by using the ADD and REMOVE commands in conjunction with con-
ditional expressions that will isolate the desired group instance.
These statements are similar to the ADD ENTRY and REMOVE ENTRY
statements except that the group name is used in place of the word
ENTRY. The only, other difference is that in MAINTAIN when the
ADD is used for a repeating group there must be a matching entry
in the file to which this group can be added.

UL/1

The syntax for deleting a group using "discrete" updating is shown
in the following example:

MODIFY RECORD 23610 EDUC DELETE

If EDUC is a group name, all groups subsumed under this group in
RECORD 23610 will also be deleted.

To delete the EDUC group and all subsumed groups fron all records
in the file for which SALARY is less than or equal to 15,000,
"selective" updating is used as follows:

UPDATE EMPFILE
SMECTIVE UPDATE
UPDATE CRITERION
SALARY LE 15000 *
MODIFY RECORD EDUC DELETE *

SC-1

Since a entry is a compound repeating group, group level changes are
handled in the same way as entry level changes (see 5.3.5.1).

5.3.5.3 Item level changes

Item level changes occur when less than complete group data is
contained in a transaction. The items to be changed may be entry
or group level items. The amount of identification required to
locate the item depends on its placement in the entry. Entry
identification is sufficient for entry level items. Both entry
and group identification are needed to locate a group level item.

For character string items, changes to individual characters or
to sub strings of characters within an item are a special type of
value change. Another special type of value change occurs when
an item value changes to or from an established system null value.
In some systems this is referred to as the deletion or insertion

322

316

www.manaraa.com

5-31

of an item. The physical insertion or deletion of items usually
takes place only when groups or entries are stored in variable
length physical records.

Some facilities will either inform the user of the effect of
changes being made or allow him to supplement the conditions
contained in his data selection (see 5.3.4) with another method
of stating conditions on item values that must be met before
changes are made. An example of supplemental information is the
ability of a system to notify the user when the value put in an
item is the same as its previous value.

GIS

In the UPDATE mode all item level changes are confined to value
changes, including null (i.e. "absent') values, for transaction
entries or groups with identifier items that match file entry or
group identifiers. These are performed by

IINCLUDEF)
data-file-name

(entry-namel
REPLACEF group-name '

which use nonnull (i.e. not "absent") transaction entry or group
items to change the value of corresponding file items. In case
there is no group or entry identifier match, REPLACEF will indicate
an error condition and no updating takes place. For similar
unmatched conditions, INCLUDEF will insert the transaction into the
file with higher level group identifiers supplied. The definitions
used for Figures 5-2 through 5-4 treat this as an entry or group
level insertion.

In UPDATE and MODIFY, changes to data file items can be made with
any of the following statements

CHANGE
[file-item-name Harithmetic- expressionl
temporary-variable-name) TO{string- expression

1

INCREASE
DECREASE Ifile - item -name

MULTIPLY temporary-variable-name
BY arithmetic expression

DIVIDE

ERASE temporary-item-name
(file-item-name

323

www.manaraa.com

5-.32

Since CHANGE can be used to change an item value from the system's
null value "absent" (i.e. not blank or zero) to a data value, it
may be thought of as a way to insert an item. LikeWise, ERASE
which converts an item to the null value can be thought of as a
way to delete items.

MARK IV

The Transaction Definition Form provides codes for indicating
that item values in file entries or groups are to be replaced by
the transaction value, replaced only if the transaction value is
non-blank, or replaced with blank or zero If the items are numeric,
codes can be used to add or subtract transaction values from item
values. In Processing and Record Selection, item values may be
changed by the usual arithmetic operators and a replace operator
that is the equivalent of the COBOL MOVE statement.

NIPS

The following statements may be used to change the values of both
fixed and variable length items.

MOVE operandl [TO] operand2

SUBROUTINE subroutine-name
MOVE operandl [TO] operand2 USING TABLE table-name

EXIT label

In the second statement, label is the label of the NFL statement
that will be executed from the error exit of the table or sub-
routine. Operandl must be a fixed length item.

The following statement may be used to change the values of fixed
length items.

COMPUTE operand = arithmetic expression

Fixed length items are set to their null-values by

DELETE FIELD operand

This same statement will actually delete a variable length item.

Variable length items may be inserted by

ATTACH operandl TO operand2

This statement appends the contents of operandl to the variable
length operand2. No provision is made for inserting fixed lengtt.
items.

3214

318

www.manaraa.com

5-33

Operands may be constants or items from the file entry or the
transaction

TDMS

The SET command with an optional WHERE conditional expression is used
to change item values in both the MAINTAIN and UPDATE modes. A null
1,alue can be assigned to an item by a comtination of SET and FAILS as
for example

SET AGE EQ FAllS WHERE EMP NAME EQ JONES

In MAINTAIN, the object of the SET command can be more complicated
than in UPDATE. It may include arithmetic expressions containing
items from both the current file entry and transaction.

UL /1

The statement for changing an item value is

IIitemid
RE PLACE WITH value

if the nonnull value of a data file item is to be changed regardless
of its current value in the data file. If the change is to take
place only if the value of the item in the data rile has a specified
value called "filevalue", the statement is

IREPLACE1itemid filevalue WITH newvalue
R

To change a value in a multiple valued item, the following state-
ment is used

value
itemid REPLACE ordinal-position WITH ordinal-position

Ordinal position is expressed as FIRST, LAST, SUBITEM n, or
LAST BUT n.

For single valued items, only those that exist with null values can
be inserted. In that case

itemid IINSERT1 value

changes the null value to a data value. If a value is to be inserted
in a multiple valued item, the following statement may be used:

IINSERT1
itemid value IN ordinal-position

325

319

www.manaraa.com

5-34

The statement for deleting a nonnull single-valued item (the only
kind that can be deleted) using a "discrete" update is:

J
itemid

For multiple valued items, the following statement must be used

itemid IN ordinal-position

SC-1

Item level changes are mekle by first using a GET statement (see 5.3.3)
to retrieve the group containing the item to be changed. This puts
it in a puffer area. Once the group is in a buffer area, item value
changes are made with SET statements (see 5.3.5.1). When all desired
item changes have been made, the group is returned to the file with a

REPLACE group-name IN file-name

5.3.6 Transaction validation

When viewed across a number of systems, a variety of tools can be
supplied to the user for the-!king the validity of transactions.
The checking may be simple checks on item values to see that they
are of the type of within the limits supplied by the user in the
transaction definition. The user may also be allowed to specify
logical relations that must hold within a transaction before it
can be applied to the file. In other cases, the user is allowed
to specify logical relations that must hold between the transaction
and the file data before the transaction can be applied to the file.

GIS

In both UPDATE and MODIFY the conditional expressions used for the
interrogation function (see 4.3) are available for the user to
specify transaction validation. Transactions are submitted to the
system as files so the validation that results from file definition
(see 5.4.1) is also performed.

MARK IV

The user controls transaction validation by stating the conditions
to be met on the Transaction Definition Form or the Processing and
Record Selection Form. He may state minimum and maximum values for
items, specify "pictures" that indicate the acceptable class of
characters for each character position of an item, or ask for valida-
tion of items containing dates. If the system supplied character

326

'320

www.manaraa.com

5-35

classes of A-Z, 1-9, only A-Z, or 1-9 and blank, etc., are not
satisfactory, the user may define his own character class. If these
checks are put on the. Transaction Definition Form, the system will
apply them to transactions as they are received. In addition, the
user may specify similar checkr-: in his transaction processing.

NIPS

The processing to be performed is implied from the transaction
definition or is specified using NFL statements. An automatic
check is made on all data defined as numeric to be sure it contains
only + and - signs and decimal digits.

NFL statements that are particularly useful for data validation are
the IF statement with the usual relational operators and the item
PICTURE test. The MOVE statement can also be used for item
validation because it provides for moving an item via the validation
processing of a subroutine or table.

TDMS

MAINTAIN can perform its validation processing on data derived by the
use of statements containing arithmetic expressions. These expressions
may use item values from both the current transaction and the file
entry.

UL/1

The REPLACE statement (see 5.3.5.3) allows the user to state what
he believes the present value of a file item is in addition to
supplying a new value. When this is done, the value given is com-
pared with the actual file value and if they are not equal, no
updating takes place.

The user can use the word ITEMIZE at the beginning of the Update
Division to cause the printing of a listing of the old and new
contents of each item in each entry changed during the update run.

SC-1

Each of the four types of transaction validation provided on the
transaction definition form also exists as a statement that can be
used in a transaction program. The error clause for each of these
statements takes the following form:

ERROR [error-message-code] [error-action-code] pMCEPTO label]

327

3 21

www.manaraa.com

5-36

The validation statements are:

TYPECHECK transaction-item-name [MUST] [rn] type-code] ...

[error-clause] ;

VALUECHECK transactionitem-name expression

DORI expression ... error-clause ;

TO

TOTAL CHECK transaction-item-namel transaction-item-name2

[error-clause] ;

TEST (Boolean-expression)
transaction-item-name relational-operator (expression)

[error-clause] ;

These statements can be combined with the GET and SET statements
that set up a group in a buffer area and change item values in it.
Items from the buffer are also acceptable variables for expressions
in these validation statements.

These same transaction validation operations can be specified as part
of transaction definition (see 5.2.1). When this is done no buffer
items may be referenced and the SKIPTO option in the ERROR clause is
not allowed. The user may set up a separate run on a batch of
transactions to sequence check them on up to four items and to see
if the batch checks to a predetermined count of transactions, item
sum, or item value.

5.3.7 Transaction editing and transformation

Systems may provide extensive facilities for editing and transforming
transactions before they are applied to the file. Sometimes editing
consists only of supplying or truncating leading or trailing zeroes
or blanks. Transformations the user may specify can include such
things as coding or decoding transaction items and the application
of computational algorithms to the transaction or to combinations of
the transaction and file data.

GIS

Transactions are presented to the system as a file. File definition
provides for editing through the use of pictures, masks, tables,
and subroutines, and transformation through encoding and decoding
tables and subroutines (see 3.2). These are automatically applied

328

322

www.manaraa.com

5-37

as new data enters (see 5.L.1). They may, however, be overridden
by the IGNORE statement which has the following form:

EDIT /ENCODE

IGNORE filename DECODE
ALL

The option chosen from within the braces is applied to all items
in the file. The ALL option means that all editing, encoding
and decoding specifications in the data definition will be igi,ored
during updating.

Additional editing and transformation may be supplied by using
conditional statements and arithmetic expressions used for
interrogation (see Chapter 4).

MARK IV

When the Transaction Definition Form is used, transaction items may
be added to or subtracted from file items. Numeric data in string
form will be converted to the appropriate type and leading zeroes
are supplied before the transaction items are applied to the file.

When using the Processing and Record Selection facility, table
look-up transformations of both file and transaction item values
can be specified. The tables used must be defined and processed
in a dictionary maintenance run prior to the update run. Arithmetic
expressions using items fym the current file entry, and transaction
or from consecutive file entries are also available for performing
data transformations.

When the Processing and Record Selection facility is used in con-
junction with the Transaction Definition Form, the user can specify
arithmetic processing, item justification and some string manipula-
tion which will take place before or instead of the automatic
transaction processing.

NIPS/FFS

Tables may be used to code or decode data, and subroutines may be
used to transform it. The tables and subroutines must be stored
in a subroutine library prior to the update run. The subroutine
library may be stored as part of the data file. Tables provide for
validation by a simple correspondence between input values and the
values to be used by the transaction program. Subroutines can be
written in any OS/360 supported programming language. They may not
perform input and output operations and the subroutine output must
contain a specified code indicating whether execution was successful
or not.

329

www.manaraa.com

5-38

Edit masks are provided at file definition time and in output
processing. For transaction editing, the user writes his own using
mainly IF and MOVE statements as necessary.

TDMS

When using MAINTAIN, data transformations can be obtained through
statements containing arithmetic expressions that use item values
from both the current file entry and the current transaction as
operands.

The update language allows the specification of computational
procedures that can be used to perform computations on numeric
items already in the old file entry before a new file entry is
stored.

SC-1

Data items may be justified in any one of four ways with

1

RJZ

JUSTIFY transaction-item-name RJB
LJZ '

LJB

where RJ stands for right justify, LJ for left justify, Z for zero
fill, and B for blank fill.

Transformations can be performed by using arithmetic expressions
in the SET statement (see 5.3.5.1).

5.3.8 Other user specified features

Many other features maybe provided as a part of the update
function. Only one is discussed.

SC-1

The SURVEY statement is similar to the TEST statement, but instead
of being used to check on the validity of transaction data it is
used to check data in the data file. The statement syntax is:

SURVEY (boolean-expression) [error- message -code] { SKIPTO label] ;

If the Boolean_ expression is true, the error message is printed. No
SC-1 error action may be specified, but the same effect may pe
obtained by the use of the optional SKIPTO phrase.

330

324

www.manaraa.com

5-39

5.4 Auxiliary update functions

Update processing could be initiated by the system on the basis
of the time of the day, the date or data conditions. In the

system analyzed, however, it is initiated by the user submitting
a job in the batch mode, initiating a job from a terminal or
submitting a transaction from a terminal. Once the execution of

an update transaction program is initiated, certain processes may
accompany its execution that are not specifically asked for in
the transaction program. Some of these processes may be initiated
to preserve conditions specified by the user at file definition time
such as checks to preserve item data types or checks to see that
the user has complied with a system requirement like submitting
transactions in file entry identifier sequence. Others such as
writing run histories, are provided to make it possible to verify
what actions affecting the data file took place during the run.
Some actions that might be auxiliary update functions such as the
automatic creation of audit trails are discussed as part of data
administration (see 8.2). If systems have such facilities they are
mentioned here to indicate that they take place during updating.

5.4.1 Maintenance of item attributes

The maintenance of file item attributes so that they conform to the
file definition usually takes the form of automatic conversiuri, if
necessary, to file item type before it is entered into the file.
The treatment of nonconforming item lengths, and the application
of file definition criteria varies with the system.

GIS

Automatic conversion between packed decimal and right-justified
EBCDIC is provided for numeric representations. Values entered
into the file must agree with the file definition type, length
and editing criteria and are subject to encoding or decoding by
subroutines or tables provided in file definition.

MARK IV

Users provide numeric items as decimal numbers, but all OS/360 data
forms re used internally and automatic conversion is suiplied as
needed. File definition includes the specification of the length
of numeric items and the length or acceptable range of lengths of
string items. All values entered into the file must agree with
these lengths.

331

www.manaraa.com

5-4o

NIPS/FFS

Before an item is entered into a file it is checked for conformance
with the file definition item type. If necessary, acceptable con-
versions are automatically made between the item types alphanumeric,
binary, coordinate and decimal. If lengths do not agree, alphanumeric
items are padded with blanks or truncated on the right, and numeric
items are padded with zeroes or truncated on the left before being
entered into the file.

TDMS

All new values for an item are subjected to validation cheeks
specified in the DEFINE operation. This is true for new data
initially entered through GENERATE as well as for MAINTAIN and
UPDATE.

Item values are checked to see that they match the file definition
on type, length and validation criteria. Attempts to DELETE a null
valued file item or INSERT an item that exists in the file with
a nonnull value cause an error. This checking is performed after
all updating changes have been made. If the updated entry is found
invalid, the old file entry is retained. Rejected transactions
are listed.

SC-1

The execution of the SET statement (see 5.3.5.1) and transfer of
data from the buffer area to the file causes item type conversions
to take place. Checking is not a system facility, but is user
programmed using transaction validation statements (see 5.2.1 and
5.3.6).

5.4.2 Maintenance of file storage

During the updating process file storage limits may be exceeded. The
enforcement of these limits often left to tl-e operating system,
but it and other storage maintenarce functions are sometimes per-
formed by the data management system.

GIS

Performed by OS/360

332

326

www.manaraa.com

5al

MARK IV

When groups or entries are being inserted, a check is made to be sure
that the physical limits of the file are not exceeded. If they are,
the transaction is rejected.

NIPS/FFS

Performed by OS/360

TDMS

During updating, the update storage requirements are checked against
available storage. If space is not available, the updating is
terminated. MAINTAIN also includes a copy and clean up function
that regenerates spare storage after an update has taken place.

prali

During updating each entry is checked to be sure the over-all length
of the updated entry does not exceed 7000 bytes.

8C-1

Du:.Ing updating, blocks of storage are made available within the data
sets assigned to files. If the storage needed exceeds that assigned,
the run is closed. A utility program can then be used to increase the
amount of physical storage assigned, and updating continued in a new run.

5.4.3 Ordering of transactions and files

Particularly in systems that use sequential files, update pro-
cessing can be speeded up by processing the transactions in the
same sequence in which the affected entries aye stored in the
data base. The ordering of transactions may be a user responsibility.
Sometimes the transactions are accepted and processed in any order,
and sometimes the system accepts them in any order and if necessary,
sorts them into file sequence before processing.

GIS

Transactions submit.d in the batch mode that are to be entered
into a sequential file are checked to be sure they are in sequence
on the file entry identifier. Ef they are not, the transaction is
.c.,.ijected and a message produced.

MARK IV

Transactions applied to a sequential file are checked to be sure
they are in sequence on file entry identifier. If they are not,
the transaction is rejected and a message produced.

333

www.manaraa.com

5-142

NIPSJ/FFS

In the batch mode, transactions are checked to see if they are in
sort on file entry identifier. If they are not, they are sorted
before they are processed. From terminals, transactions are
accepted and processed in any order.

TDMS

MAINTAIN, which operates in the batch mode, converts the trans-
actions to a TDMS structured file before the execution of the update.

With UPDATE, which is used from the terminals, transactions are
accepted and processed in any order.

UL/1

During a "discrete update" transactions are checked to see if they
ara in file sequence. If not, they are sorted. If they are, the
sort is bypassed.

SC-1

The setup run that enters transactions into the SC-1 transaction
file requires that the user specify the sorting of transactions
that will put them in the same file entry identifier sequence as
the file they are to be used with. During updating the sequence
of the data base file is checked. If it is not in sequence, the
run .-s terminated.

5.4.4 Maintenance of system integrity

During update it is possible to provide facilities that are not the
result of user specification. The actions taken to prevent inter-
ference from the execution of other programs using the same files
are discussed under operating environment concurrency (see 10.2.2.2).

GIS

A run history that indicates recognized errors is produced auto-
matically.

When UPDATE is used, an audit trail consisting of a before and after
likUng of changed entries is made automatically.

MARK IV

A check is made to prevent entries with duplicate entry identifiers
being put in the file during updating.

3314

328

www.manaraa.com

5-43

NIPS/FFS

A run history that indicates recognized error conditions is pro-
duced automatically.

TDMS

Backup files and audit trails are not defined features, but MAINTAIN
automatically produces a new file.

UL/1

Rejected transactions are listed automatically along with an
indication of the errors causing the rejection.

Three general t;rpes of errors, translation, comparison and validation
are checked for. Translation time errors are things like incorrect
language forms or data types. Comparison time errors include things
such as a transaction that is received for an entry not in the file
or an attempt to insert an entry with an identifier that is the same
as one already in the file. Validation errors occur when the final
form of the updated entry fails to meet the criteria set up in the
data definition for the file.

SC-1

Backup files are written by the system, but they cannot be sub-
stituted for data files. The user must write a program that will
recreate the data file using the backup file as input.

335

329

www.manaraa.com

6. CREATION FUNCTIONS

The creation of the initial instance of a file or data base is
the process of making known to the data base management system
a set of entries on which it can perform other functions. This

may mean nothing more than entering a data definition (see
Chapter 3) for a file which already exists in machine processable
form. It may imply the conversion of an existing file into a
form acceptable to the system. This conversion process may be
performed by a self-contained function which is part of the system,
or it may need to be programmed in a conventional sense using
programming facilities (see Chapter 7).

In the case that a seli-contained function is provided, it may be
essentially a special use of an update function (see Chapter 5)
or it may be a facility provided specifically for the purpose of
file creation.

Data definition of the master file is always considered an
inherent part of the creation process, whether the file to be
identified to the system as a master file is converted from
some input file or whether the existing stored file is to be
made known to the system by the entry of a data definition.
The definition may be of an entire data base or some portion
of a data base. In this latter sense, it may adjoin a file
or part of a file to an existing data base.

Data definition facilities for the input file (or the system
required format), and specifications of the validation conditions
which entries stored in the master file must satisfy, are also
considered part of the creation function.

The reports which the system generates as part of the creation
process may be quite extensive and heeded by subsequent users
of the system. Control by the user over the media type for the
initial instance of the master file is usually an operating
system consideration (see Chapter 10) but is a feature of
the creation function in the sense that the user may have to
decide on storage space requirements as well as on media type
(see Chapter 8).

337

330

www.manaraa.com

6-2

Excluded from this discussion are such topics as:

problems of mobilizing human collection of data,

problems of designing adequate inputs,

re-creation of a file by loading a recovery dump
and

creation of the stored data definition as a file
creation problem (see 3.8).

The concept of creation as used here includes the .:e-creation
of a file. Re-creation is a variant of that form of creation
which converts an existing file into the desired Structure
of the file or data base.

Creation functions are discussed in this chapter only if they
are provided by the system as self-contained functions. The
host language systems provide for data structure definition,
storage structure definition, allocation of media space,
provision of input and population of the master file. However,
these actions are not organized into an independent creation
function and the population of the file is performed through
the use of programming facilities (see Chapter 7) or by
populating a null file using the update functions.

GIS

Creation requires the data structure definition and the
selection of access method for the master file. The defined
file may be populated by means of a set of procedural statements
(similar to those used in update) in a CREATE subprocedure.
An already existing file may be made known to the system if
it can be described in the data structure definition.

MARK IV

Creation requires the data structure definition and the selection
of access method for the master file. The defined file may be
populated by the update function or may already exist in an
acceptable format and require only that it be made known to
the system.

NIPS/FFS

Creation requires the data structure definition and the selection
of access method for the master file. The defined file is
populated by means of the update function or it may already exist
in an acceptable format and require only that it be made known
to the system.

332

331,

www.manaraa.com

6-3

TDMS

Creation requires the data structure definition for the master
file. The defined file must be populated and this is normally
done by a special creation function called GENERATE or by means
of the update function.

UL/1

Creation requires the data structure definition for the master
file. The defined file must be populated and this is done by a
special function called ESTABLISHMENT or by use of the update
function. If the master file is not to be updated, any file
capable of definition in the COBOL data description can be made
known to the system.

6.1 Creation action cycle

In the creation or re-creation of a file there are seven basic
steps:

definition of data structure for the file and identification
of the part of the data base being created (see Chapter 3),

o definition of storage structure for the file (see 9.4),

definition of data structure for the input source file
(see 6.2),

definition of storage structure for the input source file
(see 6.2),

allocation of media space for the file (see 6.3),

o provision of data on an input source file (see 6.4) and

o population of the file (see 6.5).

The definitic_In of the data structure for the input source file
makes use of all or part of the facilii:ies provided for the data
structure definition of the master file (see Chapter 3) or is
accommodated by a special definitional capability to accommodate
transactions like those used in update functions (see Chapter 5).

The definition of storage structure for the file is either provided
automatically or specified in part by the user (see 9.4). However,
a choice of access methods to be used on the input data file is
usually provided to the user.

339

332.

www.manaraa.com

6-4

The allocation of media space for the file is the reservation of
storage space for files (and possibly their related schema).
This allocation function is achieved by a statement of data
definition which provides parameters to the operating system
space allocation facilities. The operating system allocates
space on the physical storage medium and keeps track of space
usage.

The provision of data on an input file is the step which prepares
data for presentation to the population step. The system may
accept a foreign file created outside the system or a file
constructed by use of the interrogation functions from files
existing in the system. The input file may be not only a
physical file but also a stream of transactions which can be
viewed as the result of a procedure which provides entries
without the user being aware of an intermediate file. Trans-
actions presented from a terminal in an interactive or
conversational mode are examples of such a procedure (see 10.3.2).

The population of the file can be achieved by the simple
means of defining an existing file in such a way that it
becomes acceptable to the system. This in effect telescopes
the provision and population steps of the cycle. Otherwise
Lhe population of the file is in the mapping of da::a from the
input file to the data base and is usually performed as a
stand alone task. This task may be accompanied by built-in
error detection procedures or may permit the use of the inter-
rogation function facilities to provide reporting on the
progress of the population step. This step can also be
accompanied by special restart and recovery procedures.

The steps of the creation action cycle are normally partitioned
in some way since the entire cycle is an extensive task. The
degree to which these steps can be combined or done in parallel
is significant in understanding the use of the system (see 10.2.3).
The actions of monitoring the progress of the provision and
population steps are especially affected by the ability to
use interrogation functions to combine data extraction with
reporting and to use interrogation functions during creation
or update.

Re-creation of the data base involves the seven steps with
some variation. Revision of the data structure of the file is
discussed with da ,. structure definition (see 3.9). Definition
of the data structure for the input file and provision of data
on the input file can be subsumed in the original creation of
the file being restructured if the system provides a stored
data defin...tion and the use of a system file as input to the
creation process.

340

332

www.manaraa.com

6-5

GIS

The definition of date structure and access methods for the
master file are performed in a single step of data description.
The definition of the data structure for the input data file
is performed in a data description task. This task involves
the deanition of a sequential file of the "mulrec" (multiple
record) form. Existing system files and "hold" files may also
be used as inputs to the creation process. Allocation of
media space is defined in data management statements using
the operating system facilities. Provision of data is in the
form of a file or stream of data from a terminal. The
population of the file is described in a procedural task
which can include conditional and listing statements and wIlich
is compiled in a separate step. Each of the steps in the cycle
can be done separately or may be combined into as few as two
steps:

definition of data structure for both master file and
input data file and allocation of media space and

definition and execution of provision rf input data
and population. This latter step can be eliminated
if an existing file can be defined as is and is made
known to the system.

MARK IV

The definition of data structure and control over the access
method for the master file are performed in a single step of
file definition. The definition of the data structure for the
input data file is combined with description of population or
provision actions by defining a transaction for update or
interrogation. Allocation of media space is defined in data
management statements using the operating system facilities.
Provision of data is always on a file. Population of the master
file is by use of the update function and is accompanied by
some monitoring. These steps can all be done separately,
if desired, or done in as few as two separate groups:

definition of master file, input data file, allocation
of media space and definition of transaction programs
to provide input data and provision action and

definition of the population task and its actual
performanf:e. This latter step can be eliminated
if an existing file can be defined as is and is
made known t3 the system.

3141

www.manaraa.com

6-6

NIPS/FFS

Definition of file data structure is done in the data definition
task. Definition of the Input file data structure is combined
with definition of the provision or population transaction
programs for use in update. Allocation of media space is
defined using the operating system facilities. Provision of
input data may be from a file extracted from existing files,
a separately prepared file or a stream of transactions from
a terminal. Population of the master file is by means of
update transactions and includes some automatic monitoring.
These steps may be done separately or combined in as few as
two steps:

definition of master file data structure and access
methods and allocation of media space for the master
file and

o definition of the population action and the peeormance
of the action itself. This latter step can be eliminated
if an existing file can be defined as is and is made
known to the system.

TDMS

Definition of the structure of the file is automatically
accompanied by internal definition of storage structure.
Definition of the input file is an internal system specified
function, but utility programs are provided to ease the conversion
of input files in foreign formats. Allocation of media space
is done in conjunction with the establishment of the system
in its operating environment. Provision of input data and
population of the master file are combined and the input data
may be provided as a file or a data stream from a terminal.

UL/1

Definition of the data structure of the master file may be
done separately but requires the provision of at least one entry
and causes allocation and population with that single entry to
take place in a single step. Definition of the input data
structure is either provided by the system or by a definition
which makes an existing file acceptable for provision of input.
Allocation of media space is done automatically with the
definition of the master file. Provision of data can be done
by definition of a file to be produced by the interrogation
function, by making the description of a foreign file (whose
structure can be encompassed in a COBOL data definition) known
to the system, or by providing input in the system provided
format from a file or terminal. Population of the master file
can be combined with master file definition or done in a
separate step and is supported by monitoring capabilities.

3142

335'

www.manaraa.com

6-7

6.2 Definition of data and storage structure of input files

Input data can be provided to the system's creation or update
functions in a system specified format or in other user defined
formats. These user defined formats can be described by the
system data definition facilities, some subset of those
facilities, or in some external language. The definition can
make explicit a selection of access method for the input data
or restrict it, as is common, to sequential access.

Input data can also be extracted from existing files and put
into files acceptable as input to the creation or update
functions. The definition of such files is either implicit
in a system defined format or can be defined in the specification
of the interrogation used to extract the file data.

Internal storage of the definition of data and storage structure
for these input files is discussed in the data definition functions
(see 3.10).

GIS

Input data may take the form of a system file or of a multiple
record type file which is a sequential file of the same data
structure class as system files and expressly designed for
creation and update functions (see 5.2.1). In addition a
hold file may be extracted from existing files using the
interrogation functions for use as input data. Definition
of the hold files is done implicitly in the interrogation
processes giving rise to them. They are also sequential files
of the same data stricture class as system files (see 4.12).

MARK IV

Input data must be provided in the form of a sequential file
with fixed length entries. Definition of these files is
accomplished by the definition of the transaction program used
to populate the file through the update function (see 5.2 and
5.3). Files In the appropriate sequential fixed format can
be generated from ex!3ting system files by the interrogation
function's data selection facility (see 4.6.1 and 4.13).

NIPS/FFS

Input data must be provided in the form of a file of transactions
suitable for the update function. The definition of the data
structure of these files is accomplished by the definition of the
transaction program used to populate the file in the update
function (see 5.2 and 5.3). Files in the appropriate format
can be generated from existing system files by the interrogation
function's data selection facility (see 4.6.1).

343

336'

www.manaraa.com

6-8

TDMS

A system defined input format for file creation is provided.
Input to the GENERATE operation is a continuous string .32

characters. A definite format and sequence of the fields
within the string is required in order to identify the relation-
ships of each character. This format is of the form

item-number) b data value

where the item-number is assigned to uniquely identify the
item in the definition of the master file. As an example,

1) 37562 2) "JONES P."

3) 42074 4) "123 MAIN STREET"

When data occur in a repeating group, all associated values (with
their item numbers) are preceded by the group number. GENERATE
requires that all input data be grouped by entry and that each
entry be terminated by the symbol specified in the DEFINE operation.
Within the entry all data values for level-zero items must be
entered before any group data but may be entered in any order.
The omission of an item number and value indicates that the value
for that item is null. Group data are entered following the
values for the level-zero items. All the data values associated
with one level-zero group are entered before entering any data
belonging to a different level-zero group. The order in which
the groups of the same level appear is not significant. The

organization of data within a higher-numbered level-group follows
the same pattern as data for level-zero items and groups. That
is, the data values for the items must be entered before the
group data. Also, all the data associated with one group must
be entered before entering data belonging to another group of
the same level. Since virtually no existing data files exist
1.n the required system defined format, generalized programs
have been developed to ease the conversion from any existing
format.

UL/1

The input is provided in a system defined format or in a COBOL
format. The format of the data comprising an entry is the same
whether it is input in the Establishment Division or in the
Update Division. Each data item value must be preceded by one
of the two item identifiers, the item number of the item name.
Alphanumeric items containing spaces or reserved characters must
be enclosed in the system's string delimiters < and >. An example

3'37

www.manaraa.com

6-9

of a simple input record is:

#1 37562 4 {2 <JONES P.> 4 #3 42074

#4 <123 MAIN STREET> #5 HOMETOWN #6 CA*

If the file contains multiple valued items, or repeating groups
then parentheses are used to designate group membership. An
asterisk indicates the end of the entry. A section of the
Establishment Division called the Layout Section is used to
facilitate the establishment of files wnich already exist in
machine readable form. In the Layout Section the user may
define the layout of data items within a file of fixed-field
fixed-length entries. Blocking factors are handled automatically
by the system for such files. The COBOL record description may
be used to make files known to the system for purposes of
interrogation by the system to generate files acceptable as
input data see 4.6.1).

6.3 Allocation of media space

The definition of structure may or may not be separated into data
structure definition and storage structure definition. However,
the task of space allocation is separated internally and manifested
by the presence of diagnostic messages from the operating system
indicating the presence or absence of adequate file space in the
systems.

The space requirement can be estimated either by the system or
by the data administrator from the data structure definition
augmented by data on the number of entry instances and expected
rate of increase resulting from update. Limitations on the
media types permitted for storage of the file can be inferred
from the means required to access data for updating and
interrogation and the response constraints on these access
methods.

Space requirement considera.. ions are somewhat different for
input and file requirements and most of the self-contained
systems make some simplifying assumptions on the space require-
ments for input, for example, that it be provided serially and
processable at the time of file population.

Systems operating under OS/360 have available allocation facilities
for data sets which include both input and file. In general the
user provides the specification of the space required, the medium
and any specification required to partition the medium. This
allocation will be recorded by the system so that an attempt
duriug the population action to exceed the allocated space will
result in a message and termination of the process. OS/360

345

338

www.manaraa.com

provides for tne specification
changeability of disk and tape
methods. ADEPT 50 under which
UL/1 operates offer comparable

GIS

6-10

of overflow areas and for inter-
in the case of sequential access
TDMS operates and TDOS under which
facilities.

Uze of cverflow areas can be specified by the user and the system
reports on use of space made during population. Space reservation
is accomplished through data management statements reflecting
user estimates of space which he requires and declares in file
definition (see 9.4). Diagnostic messages are provided during
population on inconsistencies between access method and media
used as well as on entry overflow.

MARK IV

Space reservation is accomplished through data management state-
ments reflecting user estimates of space which he requires and
declares in file definition (see 9.4). Reports are made during
population on media use inconsistent with the access method.
on file names which have not been catalogued and on entry
overflow or entry data space which exceeds track capacity or
physical block (segment) capacity.

NIPS/FFS

Space reservation is accomplished through data management state-
ments reflecting user estimates of space which he requires and
declares in file definition (see 9.4). Diagnostics are provided
during population on the storage of control information which
exceeds the maximum permitted.

TDMS

The user must provide an initial estimate of file size. Space
needs encountered during population of the file are filled by
the operating system based upon this estimate. Need for
additional space will be filled up the capacity of the
volume specified.

UL/1

The user must estimate the number of disc tracks required for
temporary working space. lie must do this also for the stored
data definition (which includes validation criteria, code table
and permanent compntation procedures) and for the master file,
if these are to be stored on disc. Assignment of media type
(including which kind of disc) is done by TDOS operating system
control statements.

3h6

339

www.manaraa.com

6-11

IDS

A utility program,called Q'TTU, is provided to allocate space for
the data base. The user supplies page and optional page rarge
data consistent with the definition of the storage structure
(see 9.4). The utility establishes page headers and initializes
the inventory of pages.

IS

A utility program for data base description generation, called
DBDGEN, is provided to allocate space for the eata base. This
utility is constructed by the from macro instructions in
a library called IMS2. MACLIB. Space can be allocated in terms
of blocks, tracks or cylinders as well as from logical record
size and blocking factors. The device type may be indicated.
User specification of data definition and access method (see 9.4)
are taken into account.

SC-1

A utility program, called Data Location Definition, is provided.
It accepts information from the data structure definition to
establish the physical location of logical segments of a primary
file. User specification of the blocking and access methods
is used in this program (see 9.4). Parameters are provided to
indicate that a first generation of a file is being allocated,
the device type being used, the identifier of the part of the
data base being created, block size of records, and proportion
of space to be left for future expansion.

6.4 Provision of the input data file

The input data file may have to be specially prepared in a system
required format. Alternatively the system may provide facilities
defining the data and storage structure of data already in
machine readable form. In this latter case the system may
process the data in its existing form or may perform some kind
of transformation. In general this provision activity contains
the following steps:

data is read and selected,

n transformations are made within entry instances,

inter-entry calculations are made on item instances and

reporting is done on the result of inter-entry calculation
to provide control over completeness.

3147

www.manaraa.com

6-12

Two additional aspects of the provision activity where machine
readable data already exists are aided by the interrogation
functions of these systems (see Chapter 4). First, data may
be reviei!ed to determine the size of the file or data base to
be created and second to establish need for editing, restructuring
and other alteration of data. Restructuring may be required
to provide a more convenient input data file to the population
activity when a change of master file structure is radical
enough to cause problems in relating the existing instances
to the new structure. Editing can include decoding and encoding
of coded data, addition of data from other files and the like,
where this capability is not available during the population
step (see 6.5).

GIS

A single input data tile with a sequential or indexed sequential
storage structure can be processed provided these entries contain
an ite- in the same position in each group whose value identifies
the group or provided that the group can be identified by use
of count fields. This file can be prepared from existing
machine readable data in a separate step for the purpose of
establishing master file size and editing requirements by means
of interrogation facilities (see 4.13). This step 'an be
combined with file population in a single step where there is
no heed for review for size or editing.

MARK IV

A single input data file with a sequential storage structure is
required for the population step. The identification of the
entry is provided in the transaction definition used in the
population step (see 5.2.1). Such a file can be prepared through
the use of the interrogation function as a separate step for
the purpose of establishing master file size and editing require-
ments (see 4.13) from existing machine readable data.

NIPS/FFS

A single input data file with a sequential or indexed sequential
storage structure is required for the population step. (The

entries can be provided from a terminal using the update function
to populate the file.) The identification of the entry is
provided in the transaction definition used in the population
step (see 5.2). Su-:. a rile can be prepared through the use
of the interrogation function as a separate step for the purpose
of establishing master file size and editing requirements (see 4.13)
from existing machine readable data which is already in the
system. When the interrogation facility called RASP is used to
prepare input source data, a utility pr 'gram called UTQRTQDF

is provided to convert RASP output to a sequential tape file

3)48

341

www.manaraa.com

6-13

which contains the extracted data and the file definition
internal tables as well as prestored transaction programs
associated with the parent file. The RASP output is restricted
to data from a single file and may not contain duplicate
entries resulting from a single interrogation. Also the
RASP interrogation may not contain multiple IF conditions
(see 4.), multiple SELECT statements (see 4.2) or sorts of
the extracted data (see 4.6.4).

TDMS

Input source data must be provided in a special system format
(see 6.2). Programming aids are provided to convert existing
machine readable files into this special system format. Analysis
of such data not in system format would also be programmed
outside the system.

UL/1

A single input data file is used to populate a file. This file
may be in the special system format for this purpose (see 6.2),
or it may be a sequential file which can be described by a
COBOL data definition. Files d.:scribable in COBOL can be made
known to the system for purposes of interrogation so that they
can serve either to telescope the activities of provision and
population or to furnish the data for a file. This file would
be produced by the interrogation function as a separate step
for the purpose of establishing master file size and editing
requirements (see 4.13).

6.5 Population of the file

The population of the master file or data base can be achieved
by the simple means of defining an existing file in such a way
that it becomes acceptable to the system as a file or data base.
Otherwise the population of the file is the mapping of data
from an input file to the file or data base. This mapping may
be a simple copy of entries from the input file iuto the master
file or may require a transformation of items or the regrouping
of items into different groups from the input to the master
file. The method used for population may be the update function
or a function specialized for the purpose of creation. The

process of populating the file is normally accompanied by
facilities to validate the acceptability of the data by testing
item values and the consistencies of items within groups
or entries as well as the consistency of entries within the
file. Also facilities can be provided to insure that all the
data expected to be processed from the input file was put in
the master file. The processing in the population action

349

'342

www.manaraa.com

6-14

involves the following steps:

reading and intra-entry validation of entries in the
Input file,

testing for duplicate entries or entries invalidated by
inter-entry tests on the input file,

collection of counts or values of source data for inter-
entry validation or control totals,

transformation of input source entries or items to the
format of the master file,

collection of counts or values of master file data for
inter-entry validation or control totals,

logging or dumping of master file contents to provide
recovery in case of hardware failure during the process and

companson of inter-entry dace collected with control
information to check completeness of the process.

GIS

The population action is specified in a CREATE subprocedure with
the form:

CREATE master-file FROM source-file
create-statements
END PROCEDURE

Transformations are done by means of the create-statements and
are subject to the same limitations as statements used in the
update functions (see 5.3.7). Validation of items is auto-
matically provided on the basis of item attributes (see 2.1
and 3.2). Validation of items, groups and entries in the input
data can be provided by procedural statements which make use
of arithmetic and other operation on item values and the values
of temporary variables. Entries and groups can be listed if
they fail validation tests. Logging or dumping of a partially
populated master file is not provided. A report or counts
and control totals of both input data and file data processed
can be provided by means of procedural statements and the use
of temporary variables.

350

X43

www.manaraa.com

6-15

MARK IV

The population action is specified by use of the update
functions (see 5.3). A special transaction code for creation
provides for moving new entries from the input file into
the master file. Transformations and validation are described
in the transaction program definition (see 5.3.7 and 5.3.6).
Validation of items is specified by the user in the transaction
definition in terms of item attributes '.see 2.1 and 3.2).
Validation of groups and entries in the input data can be
provided by the use of arithmetic operations on item values
and the values of temporary variables. Logging or dumping
of a partially populated master file is not provided. A
report on counts and control totals of both input source
data and master file data processed can be provided by
means of the transaction definition and the use of temporary
variables. Automatic counts of entries processed from the
input file and entries added to the master file are provided.

NIPS/FFS

The population action is specified by use of the update
functions (see 5.3). Transformations and validation are
described in the transaction program definition (see 5.3.7
and 5.3.6). Validation of items is specified by the user
in the transaction definition in terms of item attributes
(see 2.1 and 3.2). Validation of groups and entries in
the input data can be provided by procedural statements
which make use of arithmetic operators on item values and
the values of temporary variables. Logging or dumping of
a partially populated master file is not provided. A
report on counts and control totals of both input data and
master file data processed can be provided by means of
the transaction program and the use of temporary variables.
Utilities are available, called UTBLDISM and UTBLDSAM,
which can convert, respectively a tape sequential file to
a 2314 ISAR file and a 2314 ISAM file to a tape sequential
file. These utilities can be used to populate a file on
a different medium or with a different access method from
an existing file.

TDMS

The population action is specified by use of the GENERATE
function or the update functions (see 5.3). Transformations
and validation are described in the transaction program
definition when update functions are used for creation
(see 5.3.7 and 3.3.6). Transformations are not provided

351

r).elft`

www.manaraa.com

6-16

at thy_ time of the population process. Validation of items is
specified by the user in terms of item attributes (see 2.1 and
3.2). Validation of groups and entries depends entirely upon
validation of items. Logging or dumping of a partially populated
master file is not provided but population can be suspended and
restarted. A report of counts of data placed in the data base
is provided.

UL/1

The population action is specified in the ESTABLISHMENT division
in the form

ESTABLISH file-name

An existing file, with a data and storage structure which can be
described by a COBOL data definition, can be made a file in the
system. However, this file can be used only for interrogation
and cannot be updated. Validation of items is automatically
provided on the basis of item attributes (see 2.1 and 3.2).
Validation of items, groups and entries in tae input source
data can be provided by procedural statements in the transaction
definition which make use of arithmetic and other operators on
item values and the values of temporary variables. Entries
and groups can be listed if they fail validation tests. Logging
or dumping of a partially populated master file is not provided.
A report on counts of entries in the master file is provided
automatically.

6.5.1 Entry, group and item validation

The validation of entries or groups of items usually implies
some function on already validated item values which are compared
with other data items within the group or entry or the results
of computations on such data or constants. The validation of
items $s specified in the item definition (see 2.1 and 3.2) or
in the transaction definition where population is by means of
update functions (see 5.3.6). Validation of groups or entries
may also be provided between groups or entries to insure that
identifiers of groups or entries are unique, that sequencers
are in order in the input data and the master file, or that
the overall size of entries is within some maximum.

GIS

When population consists of making an existing file known to the
sytem, no validation processing is provided. In addition to item
validation sequencer items may be required to be unique (see 2.2).
The creation statements may be used to provide conditions to

test for consistency among the items of a group or entry as
well as to test the sequence of sequencer items between group

www.manaraa.com

6-17

or entry instances. Operators and temporary variables to
provide counts, sums, averages and simple arithmetic funcrions
are available for i"clusion in the creation statements processed
during population. groups or entries which fail validation
tests may be listed and included or excluded from the file.

MARK IV

When population consists of making an existing file known to
the system, no validation processing is provided. When
population is done by means of the update functions, the
validation is that provided by the transaction programs
used for update (see 5.3.6). These transaction programs
may make use of operators and temporary variables to provide
counts, sums and other simple arithmetic functions and
conditional tests to assist in v:U.dation. Duplicate
identifiers cause the rejection of the entry or group after
the first occurrence of the identifier. Groups or entries
which fail validation may be placed on a transaction reject
file for later listing and may be included or excluded from
the file.

WIPS/FFS

When population consists of making an existing file known to
the system, no validation processing is provided. When
population is done by means of the update functions, the
validation is that provided by the transaction programs
used for update (see 5.3.6). These transaction programs
may make use of subroutines using operators and temporary
variables to provide counts, sums and other functions and
conditional tests to assist in validation. Groups or entries
which fail validation are placed in a run history file
automatically for later printing and tuey may be included
or excluded from the master file being created.

TDMS

When population consists of the use of the GENERATE function,
validation is limited to item validation (see 2.1 and 3.2).
Items which fail validation are returned for interactive
correction or the entire entry is rejected for batch correction.

UL/1

When population consists of making an existing file known to
the system, no validation processing is provided. When
population is done by means of the ESTABLISHMENT DIVISION
or the update functions, validation is defined in the form

of selection criteria (see 4.3) and arithmetic and statistical
functions (see 4.7.4). A check is made for duplicate entries

353

346

www.manaraa.com

6-18

and only the first one arriving is allowed in the master file.
Diagnostics reporting validation failures and entries having
duplicate identifiers are printed. The length of an entry
is restricted to 7000 bytes.

6.5.2 Transformations on data

During the activity of populating the file it may be necessary
to transform the values of item instances, the order of items
within a group, the order of groups or entries in the input
data file, or to bring together two or more input files into
a single master file. Within a group or entry, transformations
can be provided which change the order of items or drop items,
derive new items from old by arithmetic or other functions
and encode or decode items by table substitution or special
sub-programs. Transformations can be provided which change
the order of entries or groups from the order which they have
in the input data to some other order in the file being created.
Other transformations may serve to create new items from
counts or sums accumulated over a collection cf groups or
entries.

These transformations may be specified at the time of file
definition, by procedural statements supplied to the population
activity as transaction programs or the like, or at the time
of input data provision (see 6.4).

GIS

The order of items within groups or entries and the encoding of
item values is specified in data definition (see 2.1 and 3.2)
and mapping from input data to file is automatic. Following
the automatic mapping, items may be subjected to arbitrary
arithmetic and logical transformation with the same operators
used for validation. Sorting instances of groups or entries
in the input data is required. Such sorting is done in the
input provision activity. Population is done from a single
input file so that merging of separate streams of input data
would be done in provision of input or by entering other
streams in update transactions.

MARK IV

The order of items within groups or entries is specified in
data definition (see 2.1 and 3.2) and mapping from input data
to file is automatic. Items may be derived by functions of
arithmetic operators on item values, constants and the contents
of temporary variables, and encoded or decoded by means of tables as
specified in the transaction program associated with the
population action (see 5.3.7). Sorting instances of groups
or entries in the input is required and is done in the provision

341
354

www.manaraa.com

6-19

activity. Population is done from a single input file so that
merging of separate streams of input data would be done in
provision of input or by entering other streams in later update
transactions.

NIPS /FFS

The order of items within groups or entries and the encoding
of item values by table or special routine is specified in
data definition (see 2.1 and 3.2) and mapping from transaction
to file can be automatic. Items may be derived by functions
Epecified in subroutines written in any 360 procedural language
or associated with the transaction programs used in the population
action (see 5.3). Sorting instances of groups or entries in
the input data is done automatically. Population is done
from a single input file so that merging of separate streams
of input data would be done in provision of input or by entering
other streams in later update transactions.

TDMS

The order of items within groups or entries is specified by the
data definition of the (see 2.3 and 3.2) but the input data
is not required to be provided in this order and mapping is done
automatically. No transformations to derive data item values
are permitted in GENERATE although arithmetic functions are
available in the update function (see 5.3.7). Sorting of
instances of entries is unnecessary. Instances of repeating
groups within entries need not be sorted but must be provided
within the entry at the time of population. Any reordering
of data required to provide entries must be done at the time
of input provision. Population may be done from one or more
input streams.

UL /l

The order of items within groups or entries and tables for
encoding data are specified by the data definition (see 2.1
and 3.2). The input data may be provided in the defined order
or not in which case mapping from the input file to the file is
automatic. Items may be derived by functions of arithmetic
operators on item values (see 4.7.4) within a group or entry
as specified in the procedural statements associated with the
population activity. When population is by use of either
the update function or the ESTABLISHMENT division, sorLing
is done automatically. Population is done from a single
input file so that merging of separate streams of input data
would be done in provision of input or by entering other
streams in update transactions.

`)48
355

www.manaraa.com

6-20

6.6 Monitoring creation functions

Monitoring is the reporting of data reflecting the errors
encountered in the various steps of the creation cycle and
the statistics indicating the size of and resources used by
files. In the, course of the population activity, errors
encountered by the validation criteria and data unacceptable
to the input/output facilities of the operating system are
normally reported. Correction of such invalid data can be
on-line or batched. At the end of the population step,
statistics indicating the amount of file storage used, counts
of input file transactions and file entries created can be
reported. The interrogation facilities may be available
during the population activity to provide any reporting
required by the user.

In the provision step in the creation cycle, validation
errors and statistics on the size of the input file prepared
may be reported. A sev.rate analyois made of files ready to
be used as input to the population function may be provided.

In the other steps of the creation cycle all systems provide
diagnostic messages on vio1.ation of language syntax in data
definition, transaction specification and storage allocation.

GIS

Errors detected by the system or by user procedures in the
CREATE sub-procedure are reported. The user may select a
code to control the severity level of errors reported. These
errors include I/O errors, failures of the data to pass validation
tests, arithmetic operation errors and overflow, groups, entries
or files too large for allocated storage and missing hierarchical
levels in data entries. Optionally the entries created can be
listed as well as the transactions of the input file. After
the population activity an automatic report is provided on the
number of input transactions encountered and file entries
inserted. For indexed sequential files, counts are reported
for file entries in the primary file area, and entries placed
in the overflow area. Counts of overflow cylinders filled,
unused tracks still available in the overflow area, accesses
made to the overflow area, levels of index used and tracks
needed to accommodate the high level indexes are automatically
reported. The interrogation capabilities cannot be used
during population of the file. If provision of input is from
existing file data as in re-creation or from system useable
files, the interrogation capabilities are available to monitor
the activity but no special analysis reporting is provided.

356

www.manaraa.com

6-21

MARK IV

Errors detected by the system or by user specification of
transactions in the update function used to create files
are reported. Entries rejected by the validation criteria
are placed an a reject file. On the output report provided
to the user and printed from the reject file are also I/O
errors, arithmetic operand conversion errors, groups,
entries or files too large for allocated storage, entries or
groups having duplicate identifiers and transaction sequencers
out of order. Since the full capability of the interrogation
function is available during update, any additional reporting
required by the user -,an be requested. At the end of the
population step there is an automatic report on the number
of input transactions encountered and file entries inserted.
For indexed sequential files counts are reported for file entries
in the primary file area, and entries placed in the overflow
area. Counts of overflow cylinders filled, unused tracks
still available in the overflow area, and accesses made to
the overflow area are also reported. If provision of input
is from existing ale data as in re-creation or from system
useable files, the interrogation capabilities are available
to monitor this activity but no special analysis reporting
is provided.

NIPS/FFS

Errors detected by the system or by the user defined transaction
programs in the update func:ion which is used to create files
are reporter'. These errors include, in addition to failures
of data to pass validation tests, I/O errors, non-numeric
operands in arithmetic functions and duplicate identifiers.
Transaction programs used to create the file can also be used
to select data an2 place it on another file (see 5.2.2). This
file can be used to generate reports on the effects of the
population step. After the population activity an automatic
report is provided by the operating system on the number of
input transactions encountered and file entries inserted.
For indexed sequential files counts are reported for file
entries in the pri-aary file area, entries placed in the overflow
area as well as counts of overflow cylinders filled, unused
tracks still available in the overflow area, accesses made
to the overflow area, levels of index used and tracks needed
to acf_:ommodate the high level indexes. If provision of input
is from existing file data as in re-creation of from system
useable files, the interrogation capabilities are available
to monitor this activity but no special analysis reporting is
proviued.

350
357

www.manaraa.com

6-22

TDMS

Errors detected in the automatic validation functions of
GENERATE are reported at the users option either in a batch
report or on-line permitting interactive correction of data
during the population activity. The interrogation capabilities
are not available during file population. After population
is completed a program named CHECKER is available to check
internal tables for correct pointers and associations. Data
bases prepared by GENERATE can be processed by a program
named SIZES which provides statistics about the file
storage required to accommodate the data in the file.

UL/1

Errors detected in tne data by the validation procedures
specified by the user are reported. After population is
completed by the ESTABLISHMENT function the schema is printed
showing the item number, name, description and maximum length,
also the maximum number of multi-valued items and statistics
on how the data is stored.

351
358

www.manaraa.com

7. PROGRAMMING FACILITIES

Programming facilities are so named because they can only be ac-
cessed through a procedural program written in a conventional
programming language, called the host language. The user can
only invoke the programming facilities by writing and executing
a program; therefore, he is called a programming user. The

facilities provided by a system for the programming user represent
capabilities which are distinctly different from the functions of
Data Definition, Interrogation, and Update.

In writing a program, the user calls upon the facilities by issuing
a statement. The statement may be an explicit CALL with associated
parameters or it may be incorporated as a macro or a verb in the
host language. In the statement the programming user specifies
which facility he wants such as read, write, replace, or open, and
any other parameters required by the system such as error control
and buffer designation.

The statement types used to call upon the programming facilities do
not constitute a complete language in themselves. Therefore, they
must be embedded in a conventional procedural language such as COBOL,
FORTRAN or assembly language, which is the host language.

Iii executing a statement, the system may perform some additional
support activities such as security maintenance, backup, index
maintenance, data definition maintenance, ordering maintenance,
ar,d run-time validation.

With the increased flexibility inherent in the use of programming
'facilities comes an increased responsibility for the programming
user since there is a higher risk of destroying the integrity of
the data base. The data manipulation language statements of the
programming facility permit a more detailed and precise control
over the flow of data to and from the data base stored on secondary
storage devices.

352
359

www.manaraa.com

7-02

Sometimes a self-contained system will permit the user to write and
incorporate his own program to perform processing within narrow
constraints. This is sometimes called the own code capability. It
is like writing a subroutine which the system will execute at the
appropriate place in the processing sequence. It constitutes an
avenue whereby the user can interrupt the function processing to do
some special processing which may be difficult or impossible to ac-
complish using the facilities of the self-contained function. Own
code is usually used to manipulate the contents of a buffer after
reading data from the data base or before writing data to the data
base. The own code capability is not intended to be used to control
data flow by calling upon the programming facilities; to do so re-
sults in an inherent opportunity to seriously disrupt the operation
of the system. Therefore, any discussion of an own code capability

is included with its associated function and not under programming
facilities (see Chapters 4 and 5)

COBOL, DBTG, IDS, IMS

Of the two kinds of data base management facilities, programming and
self-contained, these systems provide only programming facilities.
The set of DML statements is called the Data Manipulation Language
(DML) in DBTG, and Data Language/I or DL/I in IMS. There is no
special name for the programming facility statements in COBOL or IDS,
although in COBOL they constitute part of the set of input-output
statements.

SC-1

The system provides both programming facilities and the functions
normally associated with self-contained systems. The set of pro-
gramming facility statements is called DAMOL, DAta Management
Oriented Language.

7.1 Summary of data manipulation language statements

Figure 7-01 lists the types of statements associated with programming
facilities and shows for each system the statements which correspond
to each type. The terms used to designate DML statement types are
used throughout this chapter.

353

360

www.manaraa.com

7-03

STATEMENT TYPE COBOL DBTG IDS IMS SC-1

CONTROL
OP:N

CLOSE

-

OPEN

CLOSE

IF

OPEN

CLOSE

IF

-

-

-

OPEN

CLOSE

open

close

comEtional

RETRIEVAL
SEEK

READ

-

-

-

FIND

-

GET

KEET

FREE

MOVE

RETRIEVE

HEAD

MOVE

-

-

GET UNIQUE
GET NEXT
GNP

-

(HOLD
option)

SEEK
FIND

READ
OBTAIN
ACCESS

-

(THIS

option)

RECORD
SET

locate

locate and access

simple access

hold

currency reset

MODIFICATION
WRITE

SGRT

STORE

MODIFY

DELETE

ORDER

INSERT
REMOVE

STORE

MODIFY

DELETE

SORT

-

INSERT

REPLACE

DELETE

-

-

WRITE

REPLACE

DELETE

-

add

change

delete

reorder

reorganize

SPECIAL

SET
SEARCH

RECEIVE
SEND
ENABLE
DISABLE
ACCEPT
DISPLAY

-

-

-

-

-

GET UNIQUE
GET NEXT
INSERT

-table handling

communications

Figure 7-01
Summary of data manipulation language statements

354
361

www.manaraa.com

7-04

7.2 Modes of processing

In processing the data base the programming user may be required to
explicitly declare the mode to be used. The two common mode dis-
tinctions are between input, output, and update, and between random
and sequential processing. Depending on the mode, certain state-
ments may be inoperable or some statements may require the user to
initialize certain communication items in advance.

7.2.1 Input, output, and update modes

One common mode distinction is between input, output, and update.
The programming user may declare his intention with respect to each
file or area to be processed by his program. The declaration may
be made in the open statement or prior to initiating execution of
the program.

Under input mode dm user indicates that he only intends to retrieve
data from some named portion of the data base. Data will only be
transferred from the data base to the program. Any statements which
call for a modification of the data base would not be executed.

Under an output mode declaration the programming user declares his in-
tention to only transfer data from the program to the data base.
The output mode is used to perform initial file creation or, in
some cases, to add entries to the end of an existing file. Adding
entries to the end is quite distinct from inserting entries in the
file so as to maintain any established ordering. Only the add
type of modification statement is operative on a file in output
mode in those systems providing an output mode.

Update mode encompasses both input and output. Updating a sequential
(see 7.2.2) file requires that a new copy be created. Therefore,
tom files can be definrd, one declared for input and the other for
output. This approach is taken by COBOL and IMS so that the update
mode is reserved for random files. Alternatively, the SC-1 approach
is to permit an update declaration with either a random or sequen-
tial file. In the latter case, a new file fo. output is automatical-
ly declared by the system. The system keeps track of generations
of a file.

The system's term for each mode is given in Figure 7-02.

362

www.manaraa.com

7-05

SYSTEM
WHEN MODE
DECLARATION
IS MADE

INPUT OUTPUT UPDATE

COBOL Pt open INPUT OUTPUT 1-0

random only)

UPDATEDBTG at open RETRIEVAL* -

IDS at open RETRIEVAL - UPDATE*

IMS
1

independent
of program
and prior to
executicn
(when "PCB"
is defined)

G (GET) L (Load) A (a11)`
or any
combination
of I, R, D.
(random only)

SC-1 at open INPUT OUTPUT
(sequential
only)

UPDATE
(copy

created if
sequential)

* The asterisk is used to designate the default option, which is
selected by the system when the user makes no declaration.

1
Processing mode declaration can be made for the file or for each
group within the file.

2 The update mode declaration can be restricted to any subset of
the three modification statements.

Figure 7-02
input, output, and update modes

7.2.2 Random and sequential modes

A second mode distinction is frequently made between sequential pro-
cessing and random processing. Under sequential processing it is
assumed that the system knows and maintains some sequential rela-
t_...nship among entries in a file or members of an assembly. The user
then must, at least conceptually, reference entries in that sequence.
Referencing the "next" entry is always meaningful under sequential
processing, and some systems provide for referencing the "prior"
entry.

Under random processing it is usually assumed that the user can re-
ference any entry regardless of what was last referenced. In this
case some criteria is needed by which to identify the desired entry
or entries. It may be a single unique identifier or a complex con-
ditional expression (see 7.4.4).

356
363

www.manaraa.com

7-06

Even in sequential processing, some selection criteria may be used,
but if so, a "forward" search through the sequence of ens:ries from
the current position is generally implied.

A file stored on a sequential medium (that is, a physically sequen-
tial file) can generally be processed only in a sequential mode.
Processing a sequentially stored file in randoh 4e would be quite
inefficient and is not allowed in most systems. Sequential proces-
sing can generally be performed on either random or sequential access
files. From the viewpoint of the user, a file declared for random
processing can still be processed in some pseudo-sequential mode.

COBOL

The processing mode for each file is declared in the File Control
paragraph of the Environment Division. The relevant clauses are:

iACCESS MODE IS
['SEQUENTIAL*

RANDOM

, PROCESSING MODE IS
[fI

SEQUENTIAL

RANDOM FOR integer RECORDS

[i

, ACTUAL KEY IS item-name

For files stored on direct access devices ("mass storage") both the
access mode and processing mode clauses are required. The "actual
key" clause is required for random access. Also, random access is
a prequisite for random processing. Thus, there are '..aree modes of
access-processing: sequential-sequential, random-sequential, and
random- random.

Under sequential access, entries stored on a direct access storage
device are obtained or placed sequentially. Under rardom access,
the location of the entry to be obtained or placed is found using
the item named as the "actual key".

For sequential processing, the entries are processed in the order in
which they are accessed. Furthermore, they are processed one at a
time.

357

364

www.manaraa.com

7-07

A random processing declaration enables the system to process,
asynchronously, more than one entry at a time. The number is deter-
mined by the integer in the random processing clause. The asynchron-
ous, random processing of entries on direct access storage, requires
that the user write the associated procedural statements with a USE
statement in the Declarative section of his program. The out-of-
line procedure so defined is invoked using the PROCESS statement.

Although the "actual key" item is optional for sequential access, if
one is declared, the system will update it:

following a WRITE statement execution; and
prior to a READ statement execution only if not logically
preceded by a WRITE statement execution.

The "actual key" data item is never referred to or required by the
system if sequential access is declared.

DBTG

No mode distinction is made by the user between sequential proces-
sing and random processing. However, the proposed system is
oriented to files on direct access storage devices.

IDS

Every file is stored on direct access storage devices and therefore
random processing is always the mode.

INS

The definition of a file is made independently of any processing
program and stored in a "Date Base Description (DBD) Control Block."
At that time, the access method to be used for the file is declared
as either random or sequential. Sequential processing can be declared
in the "PCB" (see 7.4) for input or output, otherwise random processing
is assumed.

SC-1

When a file is opened the user specifies whether random processing
will be used. This option is only possible on input or update. If
update, the file must be stored on a direct access storage device.
For input mode, the file may be stored either on a direct access
storage device or on a sequential storage medium, although random
processing, which allows stepping back in the file, of a sequential
file is rather inefficient.

For sequential processing, from the time a file is opened until it
is closed, only a strict "forward" motion through the data base is
permitted. Therefore, the statements FIND, OBTAIN, RECORD, and SET
are not executable.

358
365

www.manaraa.com

7-08

7.3 Method of interface

7.3.1 Invocation of facilities from the host language

The way a programming user may invoke a programming facility varies.
One way is to incorporate statements directly into the host language
using a set of verbs which are recognized at the time of compilation.
In ads case, either a precompile is performed or the host language
compiler recognizes and processes data manipuJation language state-
ments. Where the host language is an assembly level language, the
programming user may use a set of macro instructions.

Another way to invoke the facilities is through the use of a CALL
statement. The program may call a single controlling module which
interprets the statement and then passes control to the appropriate
facility module. Alternatively, the desired facility module could
be called directly by the program. The calling sequence may include
such data as the facility desired, the user working area, and the
selection criteria.

In some systems, the normal sequence of host language statements may
have to be explicitly interrupted by preceding the invocation of
programming facilities with a control statement which indicates to
the compiler or processor that it must "exit" the host language to
interpret the statement or set of .catements. The exit statement
may serve to signal a precompiler that action is require.' on the
statement which follows.

Some systems enable the programming user to call upon the facilities
from programs written in different host languages. In some cases,
the form of the language statement and the method of interface with
the system will be the same. In other systems the method of inter-
face may be different from one host language to another.

In a CALL statement, one of the parameters of the calling sequence
identifies the desired programming facility by pointing to a data
manipulation language statement. With the statement one step re-
moved from the host language, it need not vary in syntactic form
from one host language to another.

On the other hand, when a verb is used, the form of the DML state-
ments will have to conform to the same general rules relating to the
host language. The differences among host languages may or may not
materially affect the method of interface.

59
366

www.manaraa.com

7-09

SYSTEM
HOST
LANGUAGES

METHOD OF
INVOCATION

EXPLICIT EXIT REQUIRED
FROM HOST LANGUAGE

COBOL n.a. verb no

DBTG COBOL verb no

IDS COBOL verb yes, "ENTER IDS"
(FORTRAN)

IMS COBOL call to yes, only in COBOL:
PL/I control "ENTER LINKAGE
BAL module .

ENTER.COBOL"

SC-1 COBOL call to yes, only in COBOL:
PL/I
FORTRAN

control
module

"ENTER LINKAGE

BAL ENTER COBOL"

Figure 7-03
Invocation of facilities from the host language

COBOL

This is itself a host language. Nevertheless, it does provide con-
trol, retrieval, and modification statements. They serve as a basis
of comparison with the data manipulation language of other systems.

DBTG

The current proposal presents a data manipulation language for
COBOL. Nevertheless, the programming facilities could in principle
be invoked from any host language.

IDS

The programming facilities are called by writing statements directly
in a COBOL program. The set of data manipulation language state-
ments must be preceded by an explicit exit from the host language
in the form:

ENTER IDS statement-1 ;

[I
statement-2

statements 1 and 2 cannot be regular COBOL statements and they must
be followed by a period.

360.
367

www.manaraa.com

7-10

The programming facilities are available to programs written in
FORTRAN or assembly language but only when invoked by a subprogram
which is written in COBOL.

IMS

A program invokes the programming facilities by calling a named
entry point of a control module. There is a single control module
and it can be called from COBOL, PL/I, or assembly language. The
appropriate facility module is incorporated into the program by the
loader. If the single control module is overlaid, it will be re-
loaded when next referenced.

In COBOL an explicit exit is required using "ENTER LINKAGE". When
returning, "ENTER COBOL" is required. There is no explicit exit
from PL/I or assembly language.

Within each host language the sequence of calling parameters consists
of the addresses of:

type of facility
file name
user working area
up to fifteen selection criteiia (not always required)

In addition, PL/I requires a fifth parameter to precede these. It

is a count of the number of parameters in the calling sequence.

In the program the user must declare each of the parameters which
are to appear in the calling sequence. For example, in COBOL, in
the Working Storage Section

77 LABEL PICTURE XXXX VALUE

defines LABEL with the value for the GET UNIQUE verb. All data
manipulation language verbs must be defined left justified in
four character variables.

In COBOL, the user is also required to name all the files that are
referenced in the program:

ENTRY 'DLITCBL' USING file-name-1 [,file-name-2]...

This statement must contain the same number of file names in the
same sequence as there are "PCB's" in the "PSB". The same informa-
tion must be provided in the PROCEDURE statement of PL/I.

361
368

www.manaraa.com

7 -11

SC-1

To obtain the programming facilities a program must call the control
module "DSKERNEL", a subprogram incorporated into the program by the
loader. The control module cannot be overlaid and therefore must be
in the root segment of a large segmented program.

In COBOL an explicit exit is required using "ENTER LINKAGE". When
returning, "ENTER COBOL" is required.

The call statement is the same for FORTRAN, COBOL and PL/I programs.
Due to slight differences in the handling of subroutine linkage by
the PL/I compiler, a separate entry point to the control module is
used by PL/I programs. The sequence of calling parameters is the
same for all four host languages.

The calling sequence consists of the addresses of three parameters:

the "DAMOL" statement
the user working area (not always required)
an error control word

The "DAMOL" statement is declared and stored as data in alphanumeric
format in the user program, enabling it to be dynamically modified
by the user program between executions. The statement must be scanned
and interpreted each time it is encountered during program execution.

7.3.2 Language form

The set of statements specifically provided to invoke the programming
facilities constitutes the data manipulation language (DML). The
data manipulation language is usually narrative. This is possible
whether the DML statement is incorporated directly into the host language
or referenced by a parameter in the calling sequence. Where the state-
ment in a host language verb, the form of the syntax will generally
follow that of the host language.

COBOL, DBTG, IDS

Language form is narrative.

IMS

In the calling sequence the language form is separator. In the
selection criteria the language form is fixed.

SC-1

In the calling sequence the language form is separator. The language
form of the DML statement, which is addressed in the calling sequence,
is narrative.

362t.)

369

www.manaraa.com

7-12

7.3.3 Addressable data structures

In some systems it may be impossible to address, or there may b2
certain restrictions on addressing, certain types of data structures
in the DML statements.

In the syntactic presentation of the various DML statements in later
sections, it may be convenient to use certain conventions for some
systems. When two reserved words are permissible but equivalent,
only one is shown.

COBOL

An open statement references a file. The access and modification
statements refer to an entire entry. The MOVE statement is available
only to manipulate data within the user working area and can operate
on items or groups.

A data item name may be subscripted (see 7.5.4.1) or qualified or
both depending upon its definition. In COBOL it is called an "iden-
tifier" in this general case. However, for simplicity, item-name
will be used in the subsequent presentation of specific DML state-
ments.

DBTG

A group relation ("set") or an "area" can be referenced by an open
statement. An "area" can contain instances of one or more groups,
which constitute part or all of a group relation or multiple group
relations.

The locate statement FIND addresses a group ("record") and the
simple access statement GET addresses the found group or items
within the group. All the modification statements address a group,
except for MODIFY which can also address items within the group.

A data item name may be subscripted or qualified or both. If the
same item name is used in more than one group, qualification using
group name may be necessary to achieve uniqueness. Subscripts are
used when reference is made to a data item within a data aggregate
defined with an OCCURS clause. The subscript is an integer greater
than or equal to 1. For simplicity, item-name will be used to re-
present all of these possible cases.

IDS

An open statement references a file. Statements always refer to
groups or group relations, except for the change statement and the
MOVE statement which can refer to principal items (declared at the
02 level).

363
370

www.manaraa.com

7-13

IMS

Statements can refer only to groups. In defining a file one iden-
tifier ("key") item can be declared for each group. The programming
user may define multiple "logical" files which permit the use of an
alternate identifier for groups not at the root level of the structure.
The identifier item also functions as a sequencer item.

SC-1

In the current release the open statement references a file. In a
future release a conditional expression (see 7.4.4) will be permitted
with the open statement. In this way the open will be able to re-
ference an assembly. The conditional expression identifies instances
of parent repeating groups and the parent entry for the assembly in
the data structure. A conditional expression may also select entries
or groups in the referenced file or repeating group schema.

The access and change statements can reference a group or an item.
The locate and add statements reference a repeating group. The
delete statement can reference any data base sturcture or element.

All data structure names refer to the subschema. The "Bindlist"
provides the correspondence with data base names.

In the presentation of each DML ("DAMOL") statement the following
abbreviations are used:

group/item-name name of a repeating group, a non-repeating group,
or an item. If a file is only one level, then
group and entry would be synonymous.

rgroup-name name of a repeating group.

364
371

www.manaraa.com

7-14

7.4 Pro yam-system communication

When issuing a DML statement certain information must be communicated
to the system. This includes the facility desired, the data structures
to be referenced, the criteria to be used in selecting data structures,
the location of the user working area, and an indication of what to
do upon detection of an error or exception condition. This information
may be provided explicitly as part of the statement or calling sequence
or it may be implicitly assumed by the system. The information assumed
by the system may be based upon conventions which are understood and
to be followed by the programming user or they may be based upon a
context which was defined or established earlier through prior state-
ments, declarative statements in the program, the data description
section of the program, or the data definition function.

In the case of a DML statement, explicit information is provided in
the form of operands and clauses. The call statement would have
associated with it a calling sequence of parameters. In addition
to the explicit information, a number of data item names may be
established to communicate certain information between the program
and the system. One use for such additional communication parameters
is for the system to keep track of the current position in the data
base. The pointer mechanism and methods of manipulation aid in
understanding the operation of the programming facilities.

What the system remembers or assumes between the execution of DML
statements should be known by the programming user since it may
dictate to some degree the sequence in which the statements can be
issued.

The word 'system' in program-system communication refers to the system
module, sometimes called the ruh-time support module, which first
receives and interprets the DML statement for execution. The com-
munication parameters may be used by any module called under the
control of the run-time support module. Program-system communication
does not refer to the transfer of parameters between two user-written
host language porgrams.

After reviewing the overall approach to program-system communication,
specific subjects are covered in subsequent sections. These are the
concept of currency, the method of defining and handling the user
working area, handling error and exception conditions, the scope
and method of presenting selection criteria, and programming user
requirements for security clearance. These topics cover elements
which are common to more than one DML statement. Specific DML state-
ments are referred to even though their precise definition appears
later (see 7.5).

365
372

www.manaraa.com

7-15

COBOL

All communication takes place in the Environment Division, the Data
Division or directly in the DML statement. The DMI, statement in
general contains:

verb for the facility requested
file name
other parameters relating to the verb.

DBTG, IDS

In addition to the parameters of the DMI, statement, special communica-
tion items are established to permit additional program-system com-
munication. These "system communication locations" are referenced
as variables in the host language program.

INS

In addition to the information contained in the calling sequence of
the DMI, statements, information is communicated in the "Program
Specification Block (PSB)". The "PSB" contains at least one "Program
Communication Block (PCB)" for each file to be referenced by the
program.

The "PCB" contains the following information:

1. file name (the "PCB" identifier; the same name that is used
in data definition).

2. group schemas to which this program is bound ("sensitive").
3. processing mode for each group schema indicating:

-input, output, or update (see 7.2.1)
-sequential processing only (on input or output)
-processing done to the exclusion of all other users.

4. status code (error control word).
5. name of the group schema last processed by the system (current).
6. level in the hierarchy of the group last processed by the

system.
7. maximum combined length of concatenated group identifiers

("keys").
8. concatenated group identifiers for all groups from the "root"

group down the hierarchy to the group last processed by the
system.

The "PSB" is generated independently of and prior to program execu-
tion. It describes the program and its use of the data base and ter-
minals. For each "PCB" values are established for communication items
1,2,3 and 7 above. During execution the system has exclusive auth-
ority to change the other four items. The programming user is only
allowed to access the communication items in each "PCB".

366
373

www.manaraa.com

7-16

Within a program each "PCB" must be described. The descriptions
must correspond exactly to those given at the time the "PSB" is
generated.

An 01 level Linkage Section entry in the Data Division of a COBOL
program defines an external data item for each "PCB". The EXTERNAL
data attribute in PL/I performs the same function. Each of the
communication items listed above (and some others of no consequence
here) are declared at level 02. It is through this linkage that a
program accesses the status code and other items after execution of
a DML statement.

SC-1

All program-system communication is accomplished directly through
parameters in the calling sequence and in the DML statement.

The communication elements are:

1. the DML statement (address is the first parameter of tile
calling sequence) which is in narrative form and contains:

-verb for the facility being requested
- referenced data structure
- other parameters related to the verb
- conditional expression (not always required)

2. user working area (address is the second parameter in the
calling sequence).

3. error control word (address is the third parameter in the
calling sequence).

7.4.1 Currency

When a program references the data base and the system successfully
executes the DML statement, there exists, in effect, a pointer to
the element which was referenced in the data structure. The element
is usually an instance of a repeating group. The element now "poin-
ted to" can be considered current.

Some concept of currency must be known to the programming user if
he can issue any DML statement which depends upon position in the
data base during previous processing.

367
374

www.manaraa.com

7-17

Some systems actually store a pointer in one form or another and
make it available to the program. The program may then save the
currency pointer and use it to "reset" the system at some future
time. This is one type of selection criteria (see 7.4.4).

When a structure is established as current and some sequence of
similar structures is known to both the program and the system, the
program may be able to reference the "next" or "prior" member of
the sequence.

There may be multiple currency po:_nters at any given time. For
example, the system may retain information concerning the current
entry of a file, the current group instance in an assembly, the
current group corresponding to a given schema (type), or the current
group in a group relation. In this case, if the user wants to re-
ference the current element, he would have to name the tile, the
group schema, or the group relation schema.

COBOL

Under sequential access a READ statement references the next entry
in sequence. If an entry identifier item ("actual key") has been
declared, the system updates it after a WRITE statement execution,
and prior to a READ statement execution only if not logically
preceded by a WRITE statement execution. For sequential access
the entry identifier item is not used by the system, but it is up-

dated and made available to Ole programming user.

Under random access, the desired entry is specified by the contents
of an entry identifier item. This item is used by the SEEK state-
ment (or, in its absence, the READ and WRITE statements). The item
contents are preserved until the beginning of the next DML statement
execution. The programming user can retain values of entry identi-
fiers in other program variables if he desires to return to an entry
that was current during previous processing.

DBTG

For the duration of each run unit (during execution of a program)
the system maintains currency information on the identity of the
most recent group processed (unless suppressed) by the run unit.
Currency information pertains to:

1. "Current group of group name"--the current group within
each group schema (type) known to the run unit.

2. "Current group of group relation name"--the current group
within each group relation schema ("set type") known to
the run unit. Note that the current of group relation may
be any group type which participates in the group relation
whether as a parent or as a dependent group.

360

375

www.manaraa.com

7-18

3. "Current group of area name"--the current group within
each area known to the run unit.

4. "Current group of run unit"--the current group known to the
run unit (within any group type, group relation or area).

The system also maintains:

5. The name of the group schema to which the "current group
of run unit" belongs; referred to as "RECORD-NAME" in the
program.

6. The name of the area which contains the "current group
of run unit"; referred to as "AREA-NAME" in the program.

The locate statement provides a variety of options for referencing
groups based upon these currency indicators.

Each group in the system is assigned a unique internal identifier,
called a "database-key". The currency pointers are maintained
in terms of this internal identifier. When a group is added to
the data base it is assigned a unique internal identifier which
it retains until deleted from the data base or until the data
base is reorganized.

IDS

Each group ("record") is assigned a unique internal identifier
("reference code") which is permanent until the group is deleted.
Currency records are maintained in terms of these internal identi-
fiers.

The internal identifier of the current group (the one last processed)
is always available to the program in the communication item named "DIRECT-
REFERENCE". Thus the system provides the mechanism for the currency
pointer to be reestablished at some previous.location.

As the system moves through the data base it maintains a "chain table"
for each group relation ("chain") in which a given group schema is
defined. The programming user can reference these tables using the
MOVE statement (7.5.2.5). -Knowing what a "chain table" is and how
it is used can aid in understanding the DML statements.

A "chain table" contains unique internal identifiers for a parent
group, and for the current, prior, and next dependent groups of that
parent in the group relation. As the system traverses a "chain",
the table is updated with the internal identifiers of the groups.
One "chain table" is maintained for each "chain" defined. Thus the
system retains multiple currency pointers to the data base.

369
376

www.manaraa.com

7-19

For example, if a group relation appeared as follows:

The table might appear as:

Parent 101

Prior 638

Current 176

Next 214

The system also maintains the internal identifier for the current
(last processed) group of each group schema. The programming user
can reset the currency pointers by issuing a RETRIEVE CURRENT RECORD
statement (see 7.5.2.1).

IMS

The system always remembers the group last processed so that the user
can call for retrieval of the next group. If a group is not named,
the system delivers the group which is next in the sequence without
regard for group schema (type) or level. The user then references
the "PCB" (communication item 5) to determine which type of group
was retrieved.

The system also remembers a current parent group. Successful
execution of a GET NEXT or GET UNIQUE statement establishes the cur-
rent parent as the parent of the group retrieved. By using the GET
NEXT WITHIN PARENT statement, the user ensures that the system will
not cross a hierarchical boundary to retrieve a group. That is, the
system will only consider groups which are dependent (at any lower
level) on the current parent group. Modification statements do
not cause a change in the group established az current parent.

370

377

www.manaraa.com

7-20

SC-1

Each structure be it file, entry, assembly, repeating group instance,
nonrepeating group, or item has a unique internal identifier ("IPC--
item position code"). If the opened structure is declared random,
this identifier can be saved by the programming user and subsequently
used to reset the system's currency indicator (see 7.5.2.5). It is
transferred between the program and the system through the user
working area identified in the calling sequence.

The system maintains only one currency pointer. It distinguishes
between poirting at a group or between two groups. After execution
of a locate or add statement the system points between two groups.
After execution of an access or change statement, the system points
at the group just processed. A reprocess statement requires that
the system point at a group prior to execution.

7.4.2 User working area

The locations in primary storage where data from the data base is
made available to the user program during execution, or where the
user program stores data which is to be transferred to the data base,
is called the user working area. Conceptually, the user working area
is a loading and unloading zone where all data provided by the system
in response to a data retrieval statement is delivered and where all
data to be picked up by the system must be placed. There is no
implication that the user working area is contiguous. It may include
named, noncontiguous locations.

Each concurrently running program may have its own user working area.
Sometimes a user working area is associated with each OPEN statement
executed.

The user working area is not to be confused with the system buffer(s)
which are used to receive blocks of data from secondary storage.
Both types of areas may be set up in the system but the data is
directly available to the user program only in the user working area.

Creation of the user working area may be one of the products of the
binding process. The data definition function describes the data
as it is in the data base and how it appears in the system buffers.
The auxiliary data definition in effect defines the user working
area and how and where the data will appec.r.

371

378

www.manaraa.com

7-21

Knowing the way in which the system handles the user working area
and how the user must handle it is often necessary to an understanding
of the operation of the programming facilities. Systems may vary
in the method of handling the working area and in the extent of
programming user involvement. Any conversion or transposition of
data which occurs between the user working area and the system buffer
during statement execution is considered part of the handling process.
Also, some systems provide the ability to overlap or rotate parts of
the user working area.

Another aspect concerns the way in which the user, programming in
the host language, references the data items in the user working
area. Some systems require an explicit move to take a value from
the user working area and assign it to a variable which is known to
the program before it can be used as an operand in, say, an arithmetic
expression. Some systems may permit one or more definitions of data
items in the working area to be used directly by the program in
assigning values to a variable. In this respect it is important to
know whether or not different definitions of data items can be re-
lated to the same physical storage in the working area. Other
systems may view the working area as merely a string of characters
and require the user to refer to the area with a pair of integers
specifying which character relative to the beginning and how many
characters to access.

COBOL

Each file to be opened in a program has associated with it one user
working area to store an entry from the file, and one or more system
buffers (areas). In the Working Storage Section of the Data Division
the user defines each entry to be stored in the user working area.
The rile Description section specifies the groups and their struc-
ture that go to makc up an entry of the file.

Buffers can be shared using the SAME clause in the 1-0 CONTROL
paragraph of the Environment Division. A set of files can be speci-
fied to share the same entry storage area in the user working area
or further, to share the same system buffers. Files which share the
same system buffers cannot be in the OPEN state concurrently.

The INTO and FROM options can be used with the READ and WRITE state-
ments respectively to designate a second area of storage to be used
in conjunction with the user working area. With READ, the data will
be put into the designated area and the user working area. With
WRITE, the data will be taken from the designated area, placed in
the user working area and then written to the data base.

372:

379

www.manaraa.com

7-22

The statement

[CORRESPONDING) item-name-1
MOVE TO item-name-2 (, item-name-3]...

literal

transfers data to one or more data items in accordance with an exten-
sive set of editing rules. When the CORRESPONDING option is used
all identifiers must be group items. Using the INTO or FROM option
in a READ or WRITE statement an implicit MOVE is specified to move
a set of data items (not groups) from one area to another. Thus a
dual data transfer takes place.

Under random processing a special "saved area" must be defined to
contain the entries of each file. The following appears in the
Data Division:

SA area-name; AREA CONTAINS integer-1
RECORDS

[CHARACTERS),

[; RECORD CONTAINS [integer-2 TO] integer-3 CHARACTERS] .

and simply sets aside an area in primary storage. The user may
specify the size in terms of a number of characters, in which
case the saved area is able to hold a variable number of entries.
Alternatively, a fixed number of entries can be declared in which
case the fixed entry size (integer-3) or the minimum and maximum
sizes must be specified for the entries.

Processing an entry of a random file is initiated by a PROCESS state-
ment which initiates the execution of an out-of-line subroutine.
The subroutine is specified at the beginning of the Procedural Divi-
sion with a USE statement. One "saved area" is automatically asso-
ciated at object time with each out-of-line processing cycle.

Only one processing cycle has access to a single entry in the "saved
area" at any one time. Upon completion of the asynchronous process-
ing cycle, the area is released for further storage assignment. The
execution of a PROCESS statement makes the associated "saved area"
entry unavailable for reference from any in-line procedure. The
"saved area" entry is followed by a "record description".

The entry to be processed is identifies in the statement:

[--

PROCESS section-name [FROM identifier] USING
group-name

380

area -name 1]

www.manaraa.com

7-23

The FROM implies that a MOVE statement is to be executed; area name
indicates that the user has already placed the entry in the named
"saved area"; and "record-name" is the name of an 01 level entry
which is subordinate to a "saved area" declaration.

The statement

HOLD ALL

section-name-1 [, section-name-2]...

provides a delay point that causes asynchronous processing of all
or named sections to be completed before synchronous processing is
resumed following the HOLD.

DBTG

Each program has its own user working area. The data in
area of a program is not disturbed except in response to
ment execution or by the user program's host language pro
There is no implication that user working area locations

the working
a DML state-
cedures.

are contiguous.

Data item values are moved from the system buffers to the addresses
or variables defined in the host language (the user working area),
only by issuing a "GET" statement.

The user working area is set up by the system in accordance with the
auxiliary data definition ("subschema") invoked in the program. Each
data item named in the "subschema" invoked will be assigned a location
in the invoking program's user working area and may be referenced
by its declared name. Where a "subschema" is invoked, the type of
data items included in the "subschema" and, therefore, in the user
working area, may differ from the type of those items in the definition
for the data base. The system is responsible for required con-
versions. Data items included in the data base, but not in the "sub-
schema" invoked, are not assigned space and cannot be referenced.

User defined procedures can be invoked whenever a data item requiring
special conversion is retrieved or modified. The clause

[ENCODING1
FOR [ALWAYS] CALL procedure-name

DECODING

is added to the item definition during data definition. Encoding is
performed when an item value is transferred to the data base with a
modification statement. Decoding is performed when an item value is
transferred to the user working area with a retrieval statement.
Both an encoding and a decoding clause may be used for the same data
item. The procedure is invoked in lieu of a standard conversion pro-
cedure. If the ALWAYS is not used, the procedure is invoked only if
the characteristics of the item vary between the schema data defini-
tion and the auxiliary data definition.

381

www.manaraa.com

7-24

IDS

The user working area is defined using the facilities of the COBOL
host language, in the Working Storage section of the Data Division.
An area is created for each 02 level item or group. Data items
subordinate to the 02 level are not addressable by DML statements.
Dependent items and groups at the lower levels must be referenced
by host language statements. The communication interface between
DML statements and host language statements is the user working area
established for each 02 level item defined in the Data Division.

When a group is retrieved from secondary storage, its data items are
available to the user program only after they are explicitly moved
to the user working area. Data item values are moved from the system
buffers to the locations of variables named in the host language
Data Division, only by executing a MOVE statement or a HEAD statement.

W.th a MOVE the user can move an entire entry, groups, or selected
02 level items. Each data item is unpacked from the system buffer
and put into the user working area in accordance with the item
schemas provided in the Data Division. When a current dependent
group exists in a group relation, the HEAD statement is used to
transmit all items of its parent group into the user working area.

Before storing a group, the user working area must first be initia-
lized with the data item values of the group to be stored.

If the same 02 level item name is used in different group schemas
they will share the same location in the user working area.

IMS

The user working area ("segment input-output area") is declared in
the host language program. The 01 level specifies the name of the
area which is subsequently used as the third parameter in the DML
statement calling sequence. Items declared at the 02 level and
lower can be referenced by other host language statements. The
system does not maintain a definition of item schema within a
group except for identifier items. Thus two programs which refer-
ence the same group schema must both use exactly the same user
working area definition. The system performs no conversion.

The user may desire an area to be shared by more than one group
schema (type). If a common area is used, it must be as long as
the longest group to be processed. The group is always left-
justified within a common working area. The name refers to the
leftmost position of the area.

3 7 5
382

www.manaraa.com

7-25

SC-1

Specification of a user working area is required by the access, add,
and change statements. An address in primary storage is given as
the second parameter in the calling sequence. This working area is
also used by the currency reset statements to contain a unique in-
ternal identifier.

Within his program the user declares space for one or more working
areas in the manner normally provided by the host language.

The user must define his working area to the system before he can
OPEN and manipulate the file. This is done using the "Data Bind-
list Definition" function (see Chapter 3) which processes the
auxiliary data definition. The auxiliary data definition always
refers to a tree structure and the working area is a linearization
of the data items in the structure (see Chapter 9). To achieve
word alignment, the user can insert filler items of arbitrary
length.

There is one user working area defined for each opened file.

The INTO and FROM options are provided with the access, add, and
change statements, respectively, to reduce the amount of space a
user need attach to his program for a given file. These options
cause the system to modify the relative addressing scheme. Thus
the user achieves an overlapping use of his working area. It
must be defined at least as large as the largest group the user
intends to process for the particular auxiliary data definition.

During execution of the program, if an item schema in data defini-
tion and auxiliary data definition differ in type or size, the
system performs any required conversion of item values being trans-
ferred between the data base and the user working area.

The auxiliary data definition can differ from the data base structure
in two additional ways. Items within a group may be transposed or
omitted. Secondly, a hierarchy of groups can be flattened so that
the programming user appears only to deal with a single level file,
that is, a file in which all items are principal items.

7.4.3 Error and exception conditions

In any system error and exception conditions arise which may be
communicated to the programming user and which may result in
abnormal action by the system. A system often tests for a large
number of conditions. Some conditions are obviously implied in
the discussion of a particular DML statement and need not be called
out. Greater concern rests with the method of handling error and
exception conditions.

276
383

www.manaraa.com

7-26

The approach of the system to handling errors can involve the pro-
gramming user to a varying degree. One method of handling error
or exception conditions is to return to the run unit with a value
having been placed in a special communication item. Alternatively,
the system may automatically branch to a specified error address
where a code value can be examined and a prescribed out-of-line
procedure executed. Some error conditions may result in the ter-
mination of the calling run unit issuing the DML statement.

Exception conditions include end of file and invalid group identi-
fier. The system may allow the programming user to specify certain
conditions which are to be detected and to specify the action to be
taken upon the detection of certain conditions.

COBOL

The system provides a standard response to errors. No explicit
provision is made within the language to allow user control over
specific error conditions. The user may specify his own procedure
to be executed after the standard input-output error routine. The
statement:

file-1 [, file-2]...
INPUT

USE AFTER STANDARD ERROR PROCEDURE ON OUTPUT
I-0

at the beginning of the Procedural Division is followed by an addi-
tional error handling routine.

When the exception conditions of end of file or invalid entry iden-
tifier ("key") are detected, the system executes an imperative state-
ment provided by the user as part of the DML statement.

DBTG

Six communication items are used for error conditions:

ERROR-STATUS: code indicating the type of error first detected
and the DML statement in which it occurred.

ERROR-SET: group relation name, if appropriate, in which the
error occurred.

ERROR-RECORD: group name, if appropriate, in which the error
occurred.

ERROR-AREA: the "area "name in which the error occurred.

ERROR-TYPE: indicates the type of alteration performed by a
concurrent run unit, if any.

37T
384

www.manaraa.com

7-27

ERROR-COUNT: contains the total number of errors detected
during the system's attempt to execute the DML
statement. When more than one error is detected
the first four communication items above reflect
the first error condition detected.

The values in the six error communication items remain unchanged
until the execution of the next DML statement.

Error status codes are provided to indicate the exception conditions:

end of group relation,
end of "area," and
no group was found which satisfied a given identifier or
selection criteria.

The programming user has two possible avenues for specifying actions
to be taken when the system detects an error. These actions are
specified in addition to the standard error procedures provided by
the system and they are executed prior to the standard procedures.

The USE statement specifies the error condition codes under which
a user supplied procedure is to be executed:

USE ON ERROR [iF ERROR-STATUS EQUAL integer-1 [, integer-2]..1]

The user supplied procedure is written immediately following the USE
statement. Each integer value indicates a DML statement and error
code combination for which the procedure is to be executed. If no
error status codes are listed, the procedure will be executed for
all error conditions that arise. Multiple USE statements are per-
mitted but the same error status code may appear at most once.

Alternatively during data definition the programming user can
specify that certain actions are to be taken whenever certain
operations are performed on the data base. The execution of a named,
user-defined procedure can be called for:

1. when an "area" is opened or closed,
2. when a group is the object of all or some retrieval or modi-

fication statements,
3. when an item is involved in a GET, STORE, or MODIFY statement,

or
4. when a group relation is the object of a reorder or a re-

organize statement.

385

www.manaraa.com

7-28

IDS

The statement:

IF ERROR statement-1 ELSELSE statement-2 [; statement-3].._

tests the occurrence of any logical error resulting from the last
statement executed. It may only follow the statements: STORE, RE-
TRIEVE, MODIFY, DELETE, HEAD and MOVE. Statement-1 may only be an
unconditional transfer or a subroutine call. The specific errors
which may occur are a function of the statement executed. The user
program may determine the type of error by referring to the commu-
nication item named ERROR-REFERENCE.

Testing for data dependent error conditions must be incorporated in
the procedural logic of the user program.

If the error occurs because of a hardware failure, data description
error, or an improper use of DML statements, the program will be
brought to an orderly halt, the file closed and the program ter-
minated and memory dumped, if requested, with an appropriate error
message.

The execution of a subsequent DML statement will reset the value
stored in ERROR-REFERENCE.

The statement

USE procedure-name-1 [THRU procedure-name-2]

[WITH TRACE]

-code -1 [, error-code-2
ON

ANY ABORT

is used to specify procedures to be executed for specified or all
error conditions which are in addition to standard error proce-
dures. The USE statement can appear anywhere in the program. The
procedures may not contain DML statements. The error codes used
are system defined.

The trace option will cause the system to print out the names of
the called subroutine and the calling routine repeatedly up the
calling hierarchy until the main program is reached. All fatal
error conditions result in a trace prior to termination of the
program.

379

386

www.manaraa.com

7-29

IMS

The "status code" in the "PCB" is used to communicate error or
exception conditions to the program. It is available for in-
terrogation upon completion of a call. The code remains there
until another DML statement references the same file.

A blank status code indicates successful execution.

Warning codes may be given to a program following the execution of
a GET NEXT type of statement (GN, GNP, GHN, GIMP) without a selec-
tion criteria. This can occur under two conditions. The first
occurs when the system passes from one group in the data base to
another which is at a higher level in the hierarchy (closer to the
root). The second condition occurs when the system passes from one
group schema (type) to another on the same level of the hierarchy.

Error codes are returned under a wide variety of conditions: for
invalid or inconsistent DML statement calls, a group is not found
for a given group identifier, end of file, an attempt is made
to change the sequencing identifier in an existing group, the addi-
tion of a group would cause duplication of sequencing identifiers, and
insertion of a group at the current position would destroy the ordering.

Under some conditions a program is not permitted to begin execution.
For example, the auxiliary data definition in the program ("PSB")
conflicts with the data base definition ("DBD").

SC-1

Certain error or exception conditions encountered by the system are
passed back to the calling program in the location designated by the
programming user. These conditions, if ignored or misinterpreted by
the programmer, will not affect the integrity of the system (al-
though they may cause trouble to the program). For example, the con-
version of data items on transfer between the user working area and
the system buffer can give rise to an error condition.

Other conditions are such that the programming user cannot always
be depended upon to have provided adequate recovery action. This
type of error results in termination of the calling run unit. The
system prints an error message identifying the module and the error
before terminating the program.

380:

387

www.manaraa.com

7-30

Many error messages, exception condition messages, ani xmament mes-
sages are provided by the system. They are classified as:

0 Success
1 End-of-file
2 No group for the given internal identifier (in currency reset)
3 Truncation on transferring items between system
4 Code conversion buffer and user working area.
9 No operation; statement not executed.

The system logs internally all messages generated during execution
of a run unit and prints them all upon completion or termination
of the run unit.

7.4.4 Selection criteria

The selection of data in the data base may be accomplished by assoc-
iating an identifier or a conditional expression with a DML state-
ment. The conditional expression capability for selection criteria
may be the same as that used in the interrogation function (see
Chapter 4).

Selection criteria are only used to select from a set of data ele-
ments which replicate, namely, to select one or more entry instances
from a file or one or more group instances from a repeating group
or a group relation. Furthermore, selection criteria do not in-
clude selection based solely on the position of the entry or groups
with respect to the current or last one processed, or to its posi-
tion with respect to the whole set of replicated structures. Thus
criteria such as NEXT, PRIOR, FIRST, LAST are excluded. If desired,
they are included as options in the DML statements themselves.

The form and content of the selection criteria may be quite simple
and restricted or it may be very flexible permitting such things as
comparison of item values, to constants, ranges, other item values,
or conditions of existence or type, and the combining of atomic
conditions using the full power of logical and relational operators.
In the simplest case, the selection criteria consists of a value for a
unique internal identifier of a group.

Under random processing some selection criteria are required since
selection of a group is not always based on a sequence relationship.
Under sequential processing, selection criteria can still be mean-
ingful. Rather than always access the next instance, the user may
want the system to search through the set of replications beginning
from the first or the current instance. The system would search
through the sequence until an instance was found that satisfied the
selection criteria or until the end was reached. In fact, if the
file is on direct access storage the system may be able to go dir-
ectly to the desired instance without a sequential search.

384.

388

www.manaraa.com

7-31

COBOL, IDS, DBTG, and IMS are similar in that they achieve selection
through communication items which are initialized by the programming
user with values of identifier items. In SC-1, a conditional expres-
sion is contained in the DML statement.

COBOL

Under random processing the user provides the entry identifier in
the variable declared as ACTUAL KEY. The entry identifier is used
by the SEEK statement (and the READ and WRITE in the absence of a
preceding SEEK).

DBTG

The DML does not provide for selection criteria in the form of
Boolean expressions. However, it does provide selection capability
on data items specified in data definition with values supplied prior
to issuing DML statements. In this sense a selection capability is
provided where the criteria are always equal comparisons and united
conjunctively.

The definition of a group specifies that its selection is "direct",
"calculated" or via the parent of a group relation. If direct, a
communication item must be defined to contain the unique internal
identifier prior to execution o a DML statement. If calculated,
one or more communication items must be defined to contain identifier
values on which the location of the group is calculated.

If the selection of a group is via its parent in a group relation,
the selection takes place in two steps -- first a unique parent must
be selected, that is, an instance of the group relation, then the
desired dependent group is selected..

The selection of the parent group is declared when the group relation
is defined. It is accomplished in one of the three ways specified
previously. In the group relation definition special item names must
be declared which correspond to the communication items in the pre-
vious paragraph.

The dependent group can be found by declaring "SEARCH KEYs" which
are identifier items from the dependent group. The system then
searches for the desired group based upon the values of these iden-
tifier items which are supplied by the program prior to ME state-
ment execution.

Selection of groups based upon values of these various identifier
items is performed by the DML statements FIND, MODIFY, and STORE.

382
389

www.manaraa.com

7-32

IDS

Selection criteria do not explicitly appear in the DML statement.
The method of retrieval is largely determined at data definition
time.

When an entry is defined, a special communication item is established
to contain a unique internal identifier. This item is initialized
prior to retrieving an entry. The programming user supplies a unique
internal identifier in the communication item, "Direct-Reference",
and then issues a RETRIEVE DIRECT statement.

A "calculated" group is retrieved by calculating an internal "page"
address using the values of one or more identifier items in the
group. These values must be provided by the user prior to re-
trieving a "calculated" group.

A dependent group may be obtained by initializing one or more iden-
tifier items (ASCENDING/DESCENDING KEY items) for the dependent
group, and one or more identifier items (MATCH-KEY items) before
issuing a RETRIEVE group-name RECORD statement. In the definition
of the dependent group, the SELECT UNIQUE MASTER and the ASCENDING/
DESCENDING options would both have to be specified. If the ASCENDING/
DESCENDING option is not used, the first dependent group will be
obtained.

When a dependent group is current, the parent group may be obtained
by issuing a RETRIEVE MASTER or a HEAD statement.

IMS

The addresses of the selection criteria are the fourth to the eight-
eenth parameters in the calling sequence. Each selection criteria
refers to one group at each level in the hierarchy down to the desired
group. It contains a single condition on a single item in each group
in the hierarchy.

Selection criteria arerequired on a GET UNIQUE statement and an
INSERT statement, optional on a GET NEXT statement, and not
allowed on DELETE or REPLACE statements.

Selection criteria consist of a sequence of conditions where
the sequence corresponds to the hierarchy of groups, starting from
the root group and going down to the desired group.

A condition has tha following general form:

group-name ([I item-name relation literal)]

383

390

www.manaraa.com

7-33

The group and item names must correspond exactly to those given in
the data definition function. They must be eight characters long
and right filled with blanks if fewer characters are used. The re-
lational operator can be one of (where It(is a blank):

16= $> 16< .> .<

The literal is the value against which the value of the named item
will be compared based upon the relational operator. The literal
value must conform to the type of the named item and be the same
length. All comparisons are made on a logical bit-by-bit basis.

In some situations only the group name is specified. This is equi-
valent to other systems in which the DML statement contains the
file name and the name of a group within the file.

The condition ("segment search argument - SSA") must be declared in
the host language program. It can be declared as a unit or in
pieces thus enabling the program to reference and change parts of
the condition. The following is an example from COBOL.

01 COLLEGE-SSA
02 SEGMENT-NAME PICTURE h(8) VALUE 'COLLEGEI6'.

02 LEFT-PAREN PICTURE X(1) VALUE '('.

02 SEGMENT-KEY PICTURE A(8) VALUE 'COLLEGEV'.
02 RELATION PICTURE X(2) VALUE 14='
02 KEY-VALUE PICTURE A(12) VALUE 'MICHIGAN16140'
02 RIGHT-PAREN PICTURE X(1) VALUE ')'

Existence conditions, as such, are not supported by the system, but
naming a group without a condition will result in an error code if
no group satisfies the search; this can serve as an existence test.

Compound conditions at a single level are not possible. It is
necessary to select a group on one condition and test other condi-
tions on the selected group using statements of the host language.
Only sets of conditions from a single hierarchical path are allowed
and these may only be connected conjunctively.

Variations on the construction and use of selection criteria are
discussed with each DML statement.

384

391

www.manaraa.com

7-34

SC-1

A conditional expression is provided as the last clause of a DML
statement. It is required with FIND, SEEK, and OBTAIN, and optional
with OPEN, READ, REPLACE and DELETE. The condition is built up
from atomic conditions of the form:

"1

LT literal

GT

L2
atom := item-name [IS]

(
NUMERIC
ALPHABETIC

[NOT] PRESENT
POSITIVE
NEGATIVE
ZERO

The conditional expression then takes the form:

cond := WITH [0... atom [)]...[IC
OR
RD) [(]...atom

where conventional rules for the use of parentheses apply. The AND
and OR operators have the same level of precedence. To interrupt
the normal left to right scan and execution, parentheses must be
used.

In the current release a conditional expression can only refer to
a single level, that is, one repeating group at a time. A future
release will permit a conditional expression to refer to multiple
consecutive levels in a single hierarchical path in the data
structure.

7.4.5 Security clearance and integrity

Security clearance refers to the actions which a system takes in
response to or in conjunction with the execution of DML statements.
It also refers to the actions or information that the system re-
quires of the user in issuing DML statements.

385
392

www.manaraa.com

7-35

Actions relating to security clearance can take place at various
levels. The broadest level is related to the auxiliary data definition.
If a binding process takes place in the system to link the program
to only part of the data base, thus making it impossible for the
program to reference any part of the data base which is not known
to it through the auxiliary data definition, then to a large extent
this automatically ensures the privacy of the rest of the data base
from that program.

Of more interest to the programming user is the security checking
procedure that he will have to satisfy in order to have his DML
statement executed. Security clearance may take place at the time
of opening a part of the data base for processing and/or at the
time of issuing DML statements. The. security restriction may be
applied to data access or data modification or to both. It may be
based on some authority level and/or need-to-know. Security re-
strictions may be defined at various levels in the data base --
file, entry, group, item. Security also involves resolving the
conflict when two concurrent programs desire to reference the same
data, with at least one desiring to make modification.

The security clearance procedures will be closely associated with
the security restrictions specified in data definition (see Chapter
3). Security from a system wide viewpoint is a Data Administrator
function (see Chapter 8).

COBOL

none

DBTG

Provision is made for protection of privacy against unauthorized
access of data, and for oafeguarding the integrity of data from
untoward interaction of programs.

PRIVACY LOCKS can be defined at any of six levels from the data base
down to the data item. The programming user must provide PRIVACY
KEYS in seeking to access or modify data which is protected by
means of privacy locks. Locks can be specified against the use of
specific DML statements.

When required by data definition, the program must provide keys to
de any of the following:

regular or exclusive retrieval or update of named "areas"
INSERT, REMOVE, STORE, DELETE, GET, MODIFY, or FIND named groups
GET, MODIFY, or STORE named data items
ORDER, FIND, REMOVE, or INSERT named group relations

386
343

www.manaraa.com

7-36

The key can be given directly as a literal, as a named data item to
appear in the user working area, or as a named procedure which gen-
erates the key. The specification of these privacy keys is part of
the identification division of the host language program. A privacy
lock procedure can also be used to do such things as validate a
privacy key, ask questions of a person at a terminal, terminate the
run unit for repeated privacy violations, or disconnect the user
terminal and call back before granting access.

To safeguard the integrity of the data, the system will not execute
a modification statement following a FIND if a concurrently running
program has executed a successful modification in the interim on
the same group instance. At this point the current run unit can
choose to execute the modification statement regardless, or to ie
access the modified group instance.

Provision is included for giving a program exclusive or protected
retrieval or exclusive or protected update rights over one or more
areas. No concurrent program can gain access to the area over
which a program has acquired such rights. Exclusive control is
obtained in an OPEN statement, and is relinquished when appropriate
CLOSE statements are executed, or the program terminates.

The following table reflects conflicting (x) usage modes between
two run units attempting to execute an open statement on the same
area:

H H H H
cnr=4 Enr4 OW OW
pE-4 r4H rx1H

1-1 4:4 E-4 P4c..)A uH OA 0E-4
tx1 f:,1M

none x x yes yes

RETRIEVAL x x yes yes

UPDATE X x x x6
x x x yesPROTECTED RETRIEVAL

PROTECTED UPDATE x x x

EXCLUSIVE RETRIEVAL

EXCLUSIVE UPDATE

x x
.111

x

387
394

>
41
H
<4 w
A 00

0

yes 1 yes yes

yes yes

yes

www.manaraa.com

7-37

IDS

When a group schema is defined, an authority code number can be
provided to inhibit all unauthorized attempts to STORE, MODIFY,
or DELETE any such group. When issuing an OPEN statement the user
can supply a number to be used as an authority key. The "AUTHORITY-
KEY clause" enables access to various group types which may be pro-
tected by a defined "AUTHORITY code". The value of the authority
code number may not exceed 4095. When this clause is used in the
OPEN statement, each reference to a group of the file involves a
match of the authority value defined for the group with the authority
key supplied. When a valid match occurs, the statement is executed,
otherwise, it is not and an error condition is returned.

Note that the data definition and the DML statements are in the same
program. This means that the locks and keys to them are both de-
fined within the same user program, that is, by the same person.

IMS

The system protects certain groups in a file through the concept of
"sensitive" groups. A program can only reference those groups to
which It is bound ("sensitive") as specified in the "PCB". In addi-
tion, any program can be restricted to read-only operations against
its "sensitive" groups. Also, access can be restricted to named
terminals.

Security clearance takes place on two levels. First a password can
optionally be required to initiate execution of a program, and sec-
ondly, certain data is protected from the actions of each program
by the data administrator who specifies those files and groups
which the particular program can access.

SC-1

A program can only reference the data structures to which it is
bound.

When a user initiates the running of a program he must give his name.
Then when the OPEN statement is issued, the system looks at the "User
Security List" maintained by the Data Administrator (see Chapter 8)
to find out his "Security Restriction Level (SRL)" and his access
or modification codes.

This is compared to the SRL and access/modification codes required
to process the file to be opened. Since SRL and access or modi-
fication codes are specified at the level of individual data items,
the user's authority to act on the data is checked each time a DML
statement is issued.

When a file is opened for modification (OUTPUT, or UPDATE), no other
concurrent program is permitted to open any part of that file.

388
395

www.manaraa.com

7-38

7.5 Data manipulation language statements

The actual DML statements available to the programming user may be
classified in various ways. Four classes are identified as: con-
trol statements which do not result in any data movement, retrieval
statements which move data from the data base to the user working
area with no change in the data base, modification statements which
cause the data base to be changed in some way, and special purpose
statements which do something other than deal with a data base
stored on secondary storage devices.

7.5.1 Control statements

Statements may be provided to control the processing of the data
base. The programming user may use a pair of statements, open and
close, to begin and end processing a portion of the data base. A
statement may also be provided to control the sequence of statement
execution within the host language program based upon some condition
pertaining to the data base.

7.5.1.1 Open

Using an open statement the user signals his intention to begin
processing a portion of the data base. He may be required to iden-
tify what part of the data base is to be processed and in what mode
the processing is to be carried out.

The system then responds by ensuring that the requested portion of
the data base exists and is available to the program for processing,
by creating any tables and user working areas to be used during pro-
cessing, and perhaps by performing other related activities such as
security clearance, lockout, and binding. Generally, a data item
cannot be referenced until it is included within the scope of an
executed open statement.

If all data in the system is available to the program during execu-
tion or if the extent of the data base is limited externally, by
permitting only one file to be handled by the system at once, then
the open/close control statements are not necessary.

3 8:9:

396

www.manaraa.com

7-39

COBOL

A file is opened with the statement:

1-,

INPUT file-name

OPEN OUTPUT file-name

I-0 file-name

REVERSED

-10 REWIND

[NO REWIND]

A file named in an open statement can be designated as INPUT, OUTPUT,
or I-0. The I-0 (input-output) mode can only apply to direct access
storage files since both reading and writing are allowed only with
such files.

Label checking is performed by the open facility if specified in the
File Section of the Data Division. Additional label checking pro-
cedures can be defined with the USE statement:

BEFORE

EEFORE}

REEL
USE STANDARD

[BEGINNINC1 FILE
AFTER UNIT

f

file-name-1 [, file-name-2]...
INPUT

LABEL PROCEDURE ON OUTPUT
I-0

This statement is followed by the desired subprogram statements.
If the words BEGINNING or ENDING are not included, the designated
procedures are executed for both beginning and ending labels.

For INPUT or OUTPUT files if the external storage medium permits
rewinding, either the REVERSED or NO REWIND options may be speci-
fied. With no option specified the file will be positioned at the
beginning by the open statement. With NO REWIND, the system assumes
that the file is correctly positioned at its beginning and open
does not reposition the file. With the REVERSED option, the file is
assumed to be correctly positioned at its end, in which case sub-
sequent READ statements make file entries available to the program
in reverse order.

If an INPUT file is designated as OPTIONAL in the File Control para-
graph of the Environment Division, the OPEN will be executed and
the first READ of the file will return an end-of-file condition if
the file is not present.

Of a set of files, which are defined in the Environment Division to
share the same system buffer (area), only one can be opened at a time.

3ao
397

www.manaraa.com

7-40

DBTG

The statement:

ALL [FOR SET relation-name-1 [,relation- name -2]...
OPEN

AREA area-name-1 [, area-name-2 1...

[EXCLUSIVE]

[

[RETRIEVAL*

I

USAGE-MODE is
PROTECTED UPDATE

is used to specify the processing mode of one or more group relations
or "areas" to be opened. Further program execution is delayed until
such usage can be permitted, security clearance procedures are
carried out, and "areas" are available, that is, on-line.

With the FOR SET clause, the open refers to the "areas" included in
the auxiliary data definition that contain groups which participate
in the named group relations.

The USAGE-MODE clause indicates the processing mode (see 7.2.1) and
the integrity provisions (see 7.4.5) to be related to the opened
"areas" or group relations. The EXCLUSIVE option prohibits con-
current program execution in any mode. The PROTECTED option pre-
vents concurrent update and allows concurrent retrieval. Concurrent
update is possitle without the specification of "exclusive" or
"protected". Note that the KEEP statement still provides the 'mech-

anism to preserve the integrity of the data base. The default
mode of retrieval does not permit the use of any modification state-
ments.

IDS

The open statement:

RETRIEVAL
FORFOR [WITH AUTHORITY-KEY integer]

UPDATE*

is used to initialize processing of a data file. When the file is
opened for input only (RETRIEVAL), the STORE, DELETE, and MODIFY
statements are not operative. In the absence of the "FOR clause",
UPDATE is assumed.

A run unit can only fTen one file during its entire execution. It is
named in the Environment Division in a SELECT FILE statement.

If a group schema in the file to be opened is protected by an authority
lock, the user must provide an authority key integer with the open
statement in order to gain access to the group. The integer must
match the one provided for the group in data definition.

391
398

www.manaraa.com

7-41

IMS

The opening of a file for subsequent processing is implicit in the
first reference to a file from the user program. Through the
predefined "Program Specification Block (PSB)" the system sets up
internal tables for each file referenced by the program at the time
the program is loaded into primary memory. By comparison, other
systems do this when the file is opened. The copy of the "language
interface" control module which is loaded to process the first DML
call statement is used throughout the execution of the run unit.

SC-1

The statement:

[

OUTPUT
[RANDOM] INPUT

[cond].OPEN file-name FOR [RANDOM] UPDATE
UPDATE COPY

creates an internal table used to record the status of the opened
file and a list of all the data items and groups tr be referenced
in that file. It then reserves the system buffer ("segment buffer"),
issues the open through the operating system, and retrieves the
first relevant physical storage record ("segment").

"File-name" refers to a particular auxiliary data definition, where
it is associated with a data base file name. A planned feature of
the system provides for the auxiliary data definition to contain a
conditional expression which will select a subset of entries within
the file.

When opening for random input the data may reside on either a
sequential or a direct access device, although processing
former may be quite inefficient. With a random update open the data
must reside on a direct access device. The output option is only
used when no entries exist for that file. It signals the user's
intention to only create a file in the data base.

The UPDATE COPY option has no meaning with data stored on a sequen-
tial device since a uew copy of that portion of the data base will
always be created during the update processing. If the data is
stored on a direct access device and the COPY option is not selected,
the opened file is updated in place and no copy of the old file is
produced. With the COPY option, a copy of the new file is made
either on tape or disk during the update. The disposition of the
copy is determined by the Data Administrator through the "Data
Location Definition" function (see Chapter 8).

392
399

www.manaraa.com

7-42

7.5.1.2 Close

When the user is finished processing he may issue a close statement
which signals the system to clean up the processing and release
storage area used for tables. The open and close statements are
generally required in pairs.

COBOL

A file is closed with the statement:

NO REWIND
CLOSE file-name

UNIT LOCK

The words REEL and NO REWIND apply only to sequential access de-
vices; the word UNIT applies only to direct access storage files
which are being processed sequentially. With REEL or UNIT words
the close statement only acts on the current reel/unit of a multi-
reel/unit file. The LOCK option is used to inhibit subsequent open
statements on the closed file or reel/unit. Where it is appropriate
to the file, reel, or unit, a rewind will take place; that is. the
reel or analogous device is positioned at the beginning of its con-
tent, for a CLOSE or a CLOSE with LOCK.

In addition to standard trailer label checking, the user may specify
his own procedures with a USE statement (see 7.5.1.1). They can
be executed before or after the standard procedures.

If a file described with the OPTIONAL clause is not present when
opened and read, the standard end of file procedures are not per-
formed by the CLOSE statement.

DBTG

The statement:

CLOSE
IlALL OR SET relation-name-1 [,relation-name-2j..]

AREA area-name-1 [, area-name-2]...

is used to release control over "areas" by relinquishing any
EXCLUSIVE or PROTECTED rights and making the "areas" available to
delayed requesting programs and by relinquishing any holds ("KEEPs")
on groups within the specified "areas". The parameters of the
statement have the same meaning as in the open statement.

393:'

Iwo

www.manaraa.com

7-43

IDS

When processing is completed, a CLOSE statement is issued to trans-
fer all modified pages current.Ly residing in the system buffers to
the direct access storage device:

CLOSE

No automatic closing takes place when a program normally terminates.
Therefore a euse statement must be issued prior to any "stop run"
statement.

The close statement also causes the system to produce certain sta-
tistics reports which are appended to the IDS execution report. For
each primary entry subroutine, those called directly by the object
program, the report provides:

primary entry subroutine name
times called
number of reads
number of writes

Other reports appended to the execution report cover "data base
attributes" and "total I/O performed on the data base" (see Chapter
8).

IMS

The programming user does not issue an explicit close statement. A
file is closed, (a) when the system is brought down, (b) when the
"master terminal operator" calls for a dump or restore of that part-
icular file, or (c) in the e7ant that primary storage space has been
exhausted, a file may be closed in order to allow the opening of
another. A further reference to a file would once again open it.

SC-1

The statement:

CLOSE file-name

will, when necessary, write the final storage block into the data
base, copy the balance of a data base area open for update copy,
and then release primary storage.

3 9 4°

.401

www.manaraa.com

7-44

7.5.1.3 Conditional

A statement which tests a conditional expression provides the pro-
gramming user with the ability to modify the sequence in which host
language statements are executed, that is, to take some action,
based upon a condition which relates specifically to the state of
the data base as opposed to its content. This is not to be confused
with the conventional IF statement. Similar statements may be used
to modify the processing sequence based upon the detection of an
error condition (see 7.4.3).

COBOL

none

DBTG

The IF statement makes it possible to execute parts of his program
based upon the results of evaluating a condition relating to the
data base.

relation-name-1 SET [NOT] EMPTY

IF
OF

[relation-name-2
RECORD [NOT] SET ;

statement-1 statement-2
[NEXT SENTENCE ELSE

statement -2

SENTENCE.)

The possible conditions are: (1) whether or not the current group
relation has any dependent groups, or (2) whether or not the current
group is a dependent, a parent, or either, of any or of a named
group relation. If a current group or group ralation is not known,
the condition is returned as false and the else clause is executed.

IDS

The programming user may alter the sequence of processing based
upon the current group type. The format of the statement is:

IF group-name RECORD statement-1 ; statement-2]...

[ELSE statement-3 [; statement-4

The IF group-name clause supports the use of those retrieval state-
ments where the type of group to be retrieved may not be known until
after the retrieval is complete. It may only be used following re-
trieve direct, retrieve each, retrieve next, retrieve prior, or re-
trieve next of "CALC chain" statements.

395
402

www.manaraa.com

7-45

If the group retrieved is of the type specified by group-name, state-
ment-1 and subsequent statement-2's will be executed in sequence
and then control will be transferred to the next sentence in the
program. If the group retrieved is not of the type specified, then
control will be transferred to the ELSE clause or to the next sen-
tence in the absence of an ELSE clause.

Statements-1,2,3, and 4 may be any one of the following statements:
MOVE TO WORKING STORAGE, MODIFY, DELETE, HEAD, unconditional trans-
fer, or subroutine call. In addition, statement-3 may be another
IF group-name clause. This allows multiple test branch logic based
on group type.

IMS, SC-1

none

7.5.2 Data retrieval statements

Data retrieval statements are directed toward locating data and
making it available to the program in the user working area. Re-
trieval statements never modify the contents of the data base.

7.5.2.1 Locate

Locate statements will cause the system to locate instances of en-
tries, groups, or items in the data base but will not actually re-
sult in any transfer of data to the user working area.

In effect a pointer is established to the data in preparation for
subsequent processing. The locate statement may be used to estab-
lish the absence of a group or to locate one or more groups. The
search is usually based upon some type of criteria such as the
position of the current group, or the satisfaction of given selec-
tion criteria.

COBOL

The statement:

SEEK file-name

is used to initiate the accessing of an entry from direct access
storage for subsequent reading or writing. The SEEK statement is
only used in conjunction with the reading and writing of files de-
clared for random access mode. Wich random access files, the system
must first locate the position of the desired entry and then read
or write the entry.

396

403

www.manaraa.com

7-46

An entry identifier must be provided to the system by the program
prior to execution of the SEEK statement. It is placed in the data
item variable declared as ACTUAL KEY in the File Control paragraph
of the Environment Division (see 7.2.2).

If the programming user provides multiple entry storage areas in
the user working area then multiple SEEK statements can be issued
for the same direct access storage file before any are processed
by a read or write statement.

DBTG

The FIND statement:

FIND record-selection-expression [SUPPRESS-clause]

is used to locate a particular group specified by the "record-
selection-expression". When the group is found all four currency
pointers are updated to reflect this group unless suppressed. The
suppress clause is used to selectively suppress the updating of
one or more of the currency pointers except "current group of run
unit" (see 7.5.2.5).

A successful FIND results in the "area" name of the selected group
being placed in communication item AREA-NAME and the name of the
group schema of the selected group being placed in RECORD-NAME.

If a FIND is unsuccessful, the data base and the user working area
remain in the state existing prior to the attempted execution, and
the error communication items are set. Even though a FIND is suc-
cessfully executed a warning code may be returned in ERROR-STATUS
to indicate that a REMOVED or DELETED group was involved in the
selection of the current group. For example, the selection may
have specified the PRIOR group of the current group, but that cur-
rent group was subsequently deleted or removed from the group re-
lation.

The "record-selection-expression" may bB one of the following seven
forms to identify the desired group:

(1) [group-name] USING item-name

Prior to exccution the named item must have been initialized with
the unique internal identifier of the desired group. The user
can further qualify the selection by indicating that the desired
group must correspond to the named group schema (type).

3 9 7

404

www.manaraa.com

(2)

(3)

7-47

group-name RECORD

[OWNER IN relation-name OF] CURRENT OF
relation-name SET
area-name AREA
RUN-UNIT

Without the OWNER option this selection expression selects
the group that is current based upon one of the four currency
pointers. If the current of a group relation is desired and
the current group of the named relation was REMOVED as a re-
sult of a previous operation by the same or another run unit,
since it became current in this run unit, the FIND is executed
and a warning indicator is returned.

Use of the CURRENT OF RUN-UNIT permits revision of currency
status indicators which were previously suppressed.

With the OWNER option, first a current group is selected as
above, then its parent group in the named relation is
sel.ected.

1..._

NEXT
PRIOR
FIRST [group -name] RECORD OF relation-name SET

LAST area-name AREA
integer
item -name

This form is used to select a group from a named group relation
or a named "area" based upon the current group, the first group
or the last group. Position in an "area" is determined by the
unique internal group identifier. Position within a group re-
lation is determined by the logical order of the relation which
is established by an ordering clause during data defintion.
The FIRST, PRIOR, NEXT, and LAST options are interpreted in one of
these two ways depending upon whether the statement refers to
an "area" or a group relation.

If a group name is given only groups of that type will be con-
sidered. Also, only groups declared in the auxiliary data defini
tion to be part of the group relation or the "area" are. considered.

The integer or named item provide a non-zero integer which
selects a group based upon its ordinal ranking relative to
the beginning, if positive, or ending, if negative, of the
named relation or "area".

398'
405

www.manaraa.com

7-48

(4) OWNER RECORD OF relation-name SET

(5)

This selects the parent group of the current group of the
named relation. It is exactly equivalent to format (2)
with both relations naming the same group relation.

[NEXT DUPLICATE WITHIN] group-name RECORD

This form is used only to select groups that have been de-
clared as "calculated" in the data definitio: Prior to ex-
ecution of the FIND, the items, from which the group identi-
fier is calculated, must have been previously initialized.

Without the DUPLICATE option, the first group with the same
value for the calculated identifier is selected.

(6) group-name VIA [CURRENT OF] relation-name

[USING item-name-1 [, item-name-2]...]

This form selects an instance of the named group within an
instance of the named group relation. With the CURRENT option
the group is selected from the current group relation. Other-
wise the group relation is selected based on the "SET OCCUR-
RENCE SELECTION" clause in the data definition. All data items
named in that clause must be initialized prior to execution
of the FIND.

With the USING clause items in the named group can be used as
selection criteria. The selection will search for a group
with all values equal (conjunctive).

(7) NEXT DUPLICATE WITHIN relation-name

USING item-name-1 [, item-name-2]...

This form causes a search of the dependent groups of the cur-
rent of the named group relation for a group which is of the
same type as the current group and which has the same values
for the named items. All values in the user working area are
ignored- The search is in the NEXT direction, starts from the
current group of the named relation, and continues until a
duplicate Is found or the end of the group relation is reached.

www.manaraa.com

7-49

IDS

The statement: group-name RECORD

RETRIEVE

CURRENT group-name RECORD

PRIOR RECORD OF relation-name CHAIN
MASTER

EACH AT END GO TO procedure-name

DIRECT

NEXT RECORD OF CALC CHAIN

causes the group referenced to be retrieved and placed in the system
buffer. This action may or may not require that a block be trans-
mitted from the direct access storage device, since the group may
already be in primary memory. The group is not moved to the user
working area.

The unique internal group identifier ("reference code") of the group
retrieved is accessible in the communication item named "DIRECT-
REFERENCE" after the retrieval process is completed. The group re-
trieved is recorded as the current group of its type and is the cur-
rent group in each relation in which it is defined whether as par-
ent or dependent. If a group cannot be retrieved according to the
specifications of the retrieval statement, an error condition is
noted.

Of the retrieve options available, (1) and (5) are absolute in the
sense that the desired group can be identified independent of pre-
vious processing. The others are context dependent, since the
actual group retrieved is dependent upon previous group processing.

(1) In the first option the retrieval action is accomplished by
one of three methods predicated upon the "RETRIEVAL VIA..."
clause of the group definition in the data definition.

The group is retrieved based upon the values placed in control
data items in the user working area by the user prior to issu-
ing the retrieve statement. If the group is to be retrieved
via item name, the contents of the named item will provide
the unique internal group identifier of the object group. If
retrieval is via a named group relation, the contents of its
"MATCH-KEY" and ascending and descending sort items are used.
If retrieval is via calculated addresses, the items from which
the randomized address is calculated are found in the user
working area.

406
407

www.manaraa.com

7-50

(2) The group retrieved will be the current group of the group
type named, regardless of the processing that preceeded
since it was established as the current group. If no group
of this type has been processed, or if the last group pro-
cessed of this type was deleted, an error condition is noted.

(3) In these cases, the retrieval depends upon the current group
within the relation specified. If NEXT or PRIOR is used, the
appropriate group is retrieved regardless of the group type.
When MASTER is specified, the parent group of the relation
named is retrieved. If no groups of the relation have been
processed, or if the last group has been deleted, such that
no groups exist in the group relation an error condition is
noted.

(4) The retrieve EACH option facilitates a "reference code" as-

cending sequence serial search of the data base. This state-
ment will retrieve the first group, in ascending unique iden-
tifier sequence, whose unique identifier is equal to or
greater than that stored in the communication item named
FIRST-REFERENCE. However, if that retrieved group's unique
identifier is equal to, or greater than the value stored in
the communication item named LAST-REFERENCE, control will be
transferred to the procedure named. When a group is retrieved,
the sum of its unique identifier plus one will be stored in
FIRST-REFERENCE, initializing it for a subsequent execution
of RETRIEVE EACH. The unique internal identifier for any group
reflects its physical location on the direct access storage
device. The high order bits give "page" number and the lower
order bits give a "line" number within the physical "page".
In data definition the user has some control over the assign-
ment of unique internal identifiers to groups.

(5) For direct retrieval, the unique internal group identifier for
the desired group is supplied in the communication item named
DIRECT-REFERENCE prior to issuing the RETRIEVE statement.

(6) This option is used to retrieve the next group of a "calculated
address" group relation regardless of the type of the current
group. If a current group of the relation does not exist
(established through previous processing of groups in the re-
lation) an error condition is noted.

IMS

No statement is provided to accomplish location only. Location of
data in the data base is done in conjunction with the access state-
ments.

401

408

www.manaraa.com

7-51

SC-1

The statement:

rgroup-name IN file-name cond
FIND

rgroup-name EOF IN file-name

is used to position the internal currency pointer within a file
opened for random processing. The search always begins at the
start of the current instance of the file/assembly specified by
rgroup-name. The currency pointer is either positioned at the
first group which satisfies the selection criteria ("cond") or
at the end of the file/assembly.

If UPDATE COPY is specified or implied in the open statement, the
FIND statement will copy the data as it advances through the opened
file.

The statement:

rgroup-name IN file-name cond
SEEK

rgroup-name EOF IN file-name

is used to advance the currency pointer through the opened file,
which can be opened for either sequential or random processing.
In all other respects it functions like the FIND statement.

7.5.2.2 Locate and access

Access statements result in data being transferred from the data
base into the user working area and made available to the calling
program with no change in the data base. A single statement may
he used to accomplish both the locating and accessing of data.

COBOL

The statement:

AT END
READ file-name [INTO identifier] ; statement

INVALID KEY

is used to locate and access an entry of a random access file when
nc prior SEEK statement was executed. The READ becomes a simple
access statement when a prior SEEK was executed or when the file
is declared as sequent:l.al access.

402

b09

www.manaraa.com

7-52

For sequential processing, the READ statement makes available the
next logical entry from an input or an input-output file on a
sequential storage device or for files on a direct access storage
device but processed in a sequential mode. The END specifies an
imperative statement to be executed when an end-of-file condition
is detected.

For files in random access mode, READ implicitly performs the
function of the SEEK unless it was explicitly issued for this file
prior to the READ. In either case, the seek activity requires the
user to provide an entry identifier item. The READ statement makes
available the specified entry from the named file. If no entry
was found with the given entry identifier, the imperative statement
after INVALID KEY is executed.

If the INTO phrase is specified, the current entry is moved from the
user working area to the area specified by the identifier, a data
item name which can be qualified or subscripted. The move takes
place according to the rules of the MOVE statement (see section 7.4.2).
The entry is then available in both locations. If the file

contains variable size entries, INTO cannot be used. When the
logical entries of a file are described with more than one descrip-
tion, they automatically share the same area in the user working
area making only the current entry available.

If the end of a reel/unit is reached before the logical end of file,
the READ statement will execute the standard end of reel/unit label
procedures, swap input devices, execute beginning label checking
procedures, and make available the first entry on the new reel/unit.
If a procedure is specified for USE before or after standard reel
or label processing it will be executed.

DBTG

No statement is provided to accomplish locate and access. The
equivalent is achieved with a FIND followed by a GET.

IDS

The following statement is used to retrieve the parent group of a
specified group relation and to move all of its data items to the
user working area:

HEAD relation-name CHAIN

410

www.manaraa.com

7-53

This is the only IDS statement which locates and includes an implied
move of the group to the user wonting area. Some group within the
named ..elation must have been previously processed. If no group of
the group relation was processed, or if the last group has been
deleted, an error condition is noted.

After execution of this statement, the parent group retrieved is the
current group of its respective type. It also becomes the current
group in each relation in which it is defined as a dependent. How-
ever, it does not become the current group in any relation in which
it is defined as a parent group. In those relations, the current
group remains unchanged. Note that the function of the statement
is similar to that of the RETRIEVE parent group; MOVE TO WORKING-
STORAGE, except for the manner in which the "chain tables" are up-
dated, to reflect the current group of the relation.

If the dependent groups of the named relation were defined to con-
tain a link to parent, the system can directly access the parent.
Otherwise, it will scan thrc.ugh the remaining dependents of the
group relation.

IMS

The retrieval of groups is accomplished by the three GET statements.

GET UNIQUE (GU) is used to locate and access a single group as de-
fined by selection criteria. The selection criteria must uniquely
identify a group at each level in the hierarchy down. to the desired
group.

At the top or entry level of the hierarchy the selection criteria
must reference the item designated as the identifier ("key") item.
Also, the relational operator may only be equal (=), equal to-or
greater than (=>) or greater than (>). If no identifier value is
supplied for a group below the top level, the first instance of
the named group is selected.

This statement moves forward or backward in the file in searching
for the desired group. At lower le7e1 groups in the hierarchy, if
the file is declared random, the search item may be any defined
item. For sequential files, only the lowest level search item may
be an item other thin. the identifier.

GET NEXT (GN) may be issued with or without selection criteria.
In either case she search moves in strictly a forward fashion. from
the current position. If no current position has been established,
the search proceeds from the beginning of the file.

With no selection criteria, the next group is accessed ,ithout re-
gard to its schema (type) or level.

404
"al

www.manaraa.com

7-54

The selection criteria may begin at any level not just the "root"
group, but then it must continue for each level down the hierarchy
to the desired group. The selection criteria at a given level may
simply name a group type or may specify a condition on an item of a
named group type. If an item is named it must be the group identi-
fier item for all levels except the bottom one in the search.

GET NEXT WITHIN PARENT (GNP) operates the same as a GET NEXT state-
ment except that in its search the system will not go outside of
the tree rooted by the current parent group. Each successfully exe-
cuted GET UNIQUE or GET NEXT establishes the parent of the retrieved
group as the current parent. This statement may be used to retrieve
all groups or s,'"..ected groups within the family of the current par-
ent group. An end-of-file or not-found condition results when the
system encounters a group that is at the same level as the parent
or higher.

S C -1

The statement:

READ group /item -name IN file-name [INTO rgroup-name] [cond]

is used to transfer data into the user working area.

The system always advances through the data base, even if the file
was opened for random processing, and regardless of whether or not
a complete group is being transferred. For example, if a group
schema consists of two items, A and 13, the statements READ A followed
by READ B would access data from two successive groups. If update
with copy is requested or implied, an entry or group that has been
read is not copied until the next statement is executed which causes
the currency pointer to advance.

Applying a conditional expression to a READ statement effectively
combines the SEEK function with the READ function. In the current
release the conditional expression can only apply to ore level at
a time. The ability to refer to multiple levels in the hierarchy
with the conditional expression is planned.

Within a hierarchy of groups the user must advance down through the
levels in sequence as he issues READ statements. Holzver, he may
skip levels in backing up through the hierarchy.

The statement:

OBTAIN group/item-name IN file-name [INTO rgroup-name] cond

405
412

www.manaraa.com

7-55

is used to transfer data items from a file opened for random pro-
cessing to the user working area, with the search proceeding from
the start of the named group or the group schema of the named item.
The net effect of this statement is to combine a FIND followed by
a READ with no conditional expression.

A third statement is used to read "flattened" files:

ACCESS file-name [UNTIL item-name]

To use this statement the auxiliary data definition for the named
file can refer to, at most, only one repeating group at each level
in the hierarchical structure of the data base. The user can view
the single hierarchical path so defined as a single level or "flat"
file. The groups appear in parallel in the user working area in
the sequence which corresponds to their hierarchical sequence in
the data base.

Each success've execution of an ACCESS statement (without UNTIL)
reads the next group instance in the opened file, regardless of its
level in the hierarchy, and leaves unchanged the contents of the
user working area corresponding to all higher level groups in the
hierarchy. The user must determine the portion of his working area
that changed, that is, the repeating group schema that was read.

To use the ACCESS statement the named file can only be open for
input. The only other operable statements are open, close, RECORD,
and SET (see 7.5.2.5).

With the UNTIL option, the ACCESS statement will skip repeating group
instances until it encounters one containing the named data item.
If a higher level repeating group must be passed in order to locate
the next instance of the named data item, the data from the higher
level group is read into the user working area. The ACCESS UNTIL
statement, in effect, permits the user to read the next instance of
a specified repeating group schema without regard to hierarchical
boundaries.

7.5.2.3 Simple access

Simple access statements are used only to make data available in the
user working area after location has been completely determined.
Therefore, simple access statements never have selection criteria.
They are oriented to moving items from the system buffer to the user
working area. A system offering a general purpose locate and access
statement does not need a simple access statement.

COBOL

none (the MOVE statement transfers data already available in he
user working area to some other area of storage or visa versa).

4,06
413

www.manaraa.com

7-56

DB TG

The GET statement is used to transfer data item values from the
current group of the run unit, previously located with a FIND
statement, into like-named data items in the user working area.
The GET statement:

GET

[

[group-name]

group-name; item-name-1 [, item - name -2 1...

provides selective control over the data items made available. If
the data items are defined differently in the data base definition
and the auxiliary data definition then the system performs any nec-
essary conversion. When no items are named all the data items in
the group are transferred. Items are transferred from the current
group of the named group schema. Without a named group, items are
transferred from the current group of run unit.

If the GET statement cannot be successfully executed, the data base
and the user working area remain in the state existing before the
attempted execution. Missing data items in the group in the data
base will result in null values being placed in corresponding items
in the user working area.

IDS

The RETRIEVE statement only brings the desired group instance to a
system buffer. The MOVE statement is required to make the data item
values available to be referenced by other parts of the user program.

MOVE TO UWA [item-name-1 [, item name- 2]...]

Values of the named data items, or all data items if none are named,
are moved from the current group to the user working area. Only 02
level data items can be named in the MOVE. Each data item is unpacked
into the user working area in accordance with the item descriptions
provided in the data definition.

IMS, SC-1

none

401.

0_4

www.manaraa.com

7-57

7.5.2.4 Hold or reprocess

Some systems provide the ability to retain data in the user working
area in anticipation of further processing or to lockout access by
another run unit before this run unit is finished. The ability may
be provided by an explicit statement which allows the user to say
that he intends to process a group repeatedly and therefore the
system should hold it untr. finally requested to release it. Al-
ternatively, the ability may be provided through reprocess options
in certain statements. Some systems may normally allow for re-
processing.

COBOL

No facility is provided to reread an entry. However, the INTO/FROM
optiJns are provided to obtain multiple copies of an entry when
reading or writing.

DBTG

The statement:

KEEP

is used to advise the system of the programmer's intent to reprocess
the current group of the run unit. Any later attempt to modify that
same group will be successful only if another concurrent prograi has
not altered the group with a MODIFY, DELETE, INSERT, or REMOVE state-
ment since the KEEP was applied. In addition to the explicit KEEP
statement, an implicit KEEP applies to all groups while they are the
current group of the run unit.

The KEEP statement is not absolute; it merely signals intent. If
the object group has been modified by a concurrent run unit, the
current run unit may choose to modify the original copy of the
group in any case, or it may reaccess the desired group to get the
updated copy.

The statement:

FREE [ALL]

is used to cancel any KEEP which is in effect for the current group
of run unit, or all groups to which an explicit KEEP currently applies
in the run unit. Any KEEP is cancelled with a CLOSE or on termination
of the run unit.

The KEEP and FREE staten-nts operate within the OPEN declarations
which may have specified PROTECTED or EXCLUSIVE.

408
415

www.manaraa.com

7-58

IDS

none

IMS

Each of the three G-21' statements has a hold counterpart (GHU, GHN,
GHNP) specifically assigned for update purposes. The hold option of a
GET statement is used to identify the group to be modified. The
hold function simply establishes the run unit's intent to modify
the accessed group, which may or may not be exercised. The hold
forms of GET permit the system to make certain that the group to be
placed back in the data base is the same group that was accessed on
the last GET HOLD statement.

SC-1

The THIS option can be used on the SEEK, READ, REPLACE or DELETE
statements to reprocess the group last processed. A conditional
expression cannot be used with the THIS option. The THIS option
can only be used when the currency indicator points at a group
(see 7.4.1), therefore, it may only follow a READ, OBTAIN, REPLACE
or DELETE (but not delete file or repeating group instance).

SEEK THIS may only follow a READ or OBTAIN. It is normally used in
the case where it is desired to add a new group in front of another
group.

READ THIS steps back to the start of the last group processed and
extracts (rereads) data from it. This allows repeated processing
of a group.

DELETE THIS can reference an item or a repeating group, the latter
case having a COMPLEX option (see 7.5.3.3).

7.5.2.5 Currency reset

Some systems provide special statements to reset the currency pointer
to some location which was previously saved. Thus, an instance of
data which was previously current can once again be designated as
current.

COBOL

none

4013

416

www.manaraa.com

7- 59

DBTG

The statement:

UNIT
group -name RECORD

MOVE CURRENCY STATUS FOR TO item-namearea-name AREA
relation-name SET

is used to save the contents of one of the specified currency indi-
cators. The system stores the unique internal group identifier
("data base key") for the current' group in the aamed item.

A variation:

MOVE AREA-NAME FOR
group-name
area-name

{

RUN-UNIT

relation-name
item-name-1

RECORD
AREA
SET

TO item-name-2

is used to save the name of the specified area in item-name-2. Item-
name-1 is used to specify a unique internal group identifier.

The currency status indictors thus saved can be used in subsequent
FIND statements.

The SUPPRESS clause may be used with the FIND or STORE statements
to suppress the establishment of the object group as the current
in one or more of the currency indicators.

ALL
RECORD

SUPPRESS AREA
SET
relation-name-1 [, relation-name-2]...

It cannot be used to suppress updating of current of run uait.

IDS

CURRENCY
UPDATES

An option in the RETRIEVE statement is used to reset the currency
pointers to the current (last processed) group of a particular group
schema. With another option the programming user can place the unique
internal identifier of the desired group in the communication item
"Direct Reference" and issue a RETRIEVE DIRECT statement to reset
the currency pointers.

410
1417

www.manaraa.com

7-60

The statement:

1..

CHAIN -TABLE

MASTER
MOVE relation-name PRIOR

CURRENT
NEXT

TO item-name

is used to save all or part of the "chain table" of the named group
relation. The named item must be of the form PICTURE 9 (6) for
each item of the "chain table".

IMS

none

SC-1

The statement:

RECORD file-name

will store the unique internal identifier (IPC) of the data struc-
ture where the system is currently pointing in the named file.

The statement:

SET file-name

will reset the system so that it points to (makes current) a data
structure whose unique internal identifier was previously saved
using a RECORD statement.

If no structure corresponds to the given internal identifier, the
system positions itself where it would otherwise have been had
the structure existed. The system issues a warning message under
this situation. The user may choose to use this facility to
establish a point at which to begin processing.

Only one pointer per :pened file is maintained so that only one data
structure is classed as current at any time. The user is required
to provide the address of a storage space in the second parameter
("buffer address") of the CALL to 1SKERNEL to store the unique in-
ternal identifier. If the user desires to save more than one current
pointer in the same opened file, he must provide multiple locations
in which to store the unique internal identifiers.

The file must have been opened for RANDOM processing to use tE.se
statements.

1413

www.manaraa.com

7-61

The programming user must be aware of possible adverse situations
arising. For example, the unique internal identifier could change
subsequent to a RECORD, if higher level groups are written which
cause internal identifiers to "ripple" or overflow. Subsequent use
of SET is meaningless. It is difficult but possible for the pro-
gramming user to determine whether or not a "ripple" takes place.

7.5.3 Data modification statements

Modification statements include all those which can result in ef-
fecting a change in the contents of the data base. The new data is
placed into the user working area before issuing the statement.
Such statements may be provided to:

add now data,
modify existing data by replacing the previous contents
with new data, or

delete data currently stored.

Other statements may be provided which reorganize or reorder the
data base without changing its contents.

7.5.3.1 Add

Certain modification szatements may be used to add new data to the
data base.

The add statement is usually provided to add data to the end of a
file, to insert data into a file, or to populate a null file. The
latter case enables initial file creation (see Chapter 6).

Some systems permit the user's program to be bound to some but not
all of the items in a group. In this case, the system must have
some policy for handling the unbound items when executing a user
request to create a new entry. Often the system will store null
values in unbound items. Alternatively, the system may require
the user to be bound to all items in a group.

COBOL

All modification of the data base is accomplished through the use
or disuse of the WRITE statement:

WRITE entry-name FROM identifier] ;

INVALID KEY imperative-statement

It causes an entry to be added or inserted into an output or input-
output file.

412
1419

www.manaraa.com

7-62

For direct access storage files in the sequential access mode, the
imperative stateme-...t in the INVALID KEY clause is executed when
the end of the last segment of the file (specified in the FILE
LIMITS clause or in the ASSIGN clause of the Environment Division)
is reached and an attempt is made to WRITE another entry.

In random access mode, the WRITE statement implicitly performs a
SEEK unless one was explicitly issued prior to the WRITE for this
file. The seek action requires that the user supply an entry iden-
tifier ("key"). If it is found to be INVALID, the imperative state-
ment is executed and the entry in the user working area is still
available.

After successful execution of a WRITE statement the entry is no
longer available to the program unless the associated file is
named in a SAME RECORD AREA clause.

If the end of reel/unit is detected on a sequential access, multireel/
unit file, WRITE will swap output devices and do any label processing
required on both the old and the new. The user may additionally
provide label processing procedures.

If the FROM phrase is specified, the data is moved (non-des-
tructively) from the area specified by the identifier into the user
working area according to the rules specified for the MOVE state-
ment without the CORRESPONDING phrase.

Additional clauses are provided with the WRITE statement to control
spacing when the output file is intended to be written on a printer.

DBTG

The statement:

STORE group-name [SUPPRESS-clause]

is used to create a new group in the data base, using the data item
values previously placed in the user working area. The new group
is inserted into all group relations for which it is defined as a
MANDATORY or an OPTIONAL AUTOMATIC dependent group according to any
defined ordering. It is also added to each group relation for which
it is defined as a parent. The group is established as the current
of the run unit, and, if not suppressed, of the area in which it is
stored, of the group type, and of all relations for which it is
inserted. The communication items of AREA-NAME, and RECORD-NAME
are appropriately updated.

-113

42o

www.manaraa.com

7-63

The data items included in the data base definition but not included

in the auxiliary data definition are supplied with null values. If

item types are different in data definition and auxiliary data
definition, the system will undertake the appropriate conversion.

All required initialization must have been done prior to execution

of a STORE. statement. This includes communication items as
specified in the "Set Occurrence Selection" clause of each group
relation involved, as specified in the "location mode" clause in
the group definition, and subject to the constraints of the "WITHIN

area-name" clause. For "Direct" groups the user may suggest a
unique internal identifier to they system but it will not neces-

sarily be used. Also, for the group to be properly inserted as a
dependent in a group relation, the proper parent group must be es-
tablished a current in each relation.

IDS

The STORE statement is used to place a group into the data base and
to include it ir any defined group relations. It can be used to
populate an empty file, thus accomplishing initial file creation
(see Chapter 6).

STORE group-name RECORD

When this statement is used, it is assumed that all items for the
group have been initialized with the desired values in the user
working area, and that any other control data items required to
provide unique identification of all the parent groups of the re-
lations which contain this group have been initialized in the user
working area.

The group is placed into the data base in accordance with the clauses
of the group description entry in the data definition. The group
is stored in a physical block ("page") which is in some sense "close"
to other groups of the same type or to its parent group depending
on the user specifications. For groups stored according to calculated
addresses, if the block determined by the randomizing data items
is full, the group is placed on the first block with space available
in the direction of ascending block numbers.

The group stored is recorded as the current instance of its type
and as the current group in each relation in which it is defined.
The unique internal identifier assigned to the group stored is
accessible in the communication item named DIRECT-REFERENCE after
the storage process is completed. The type of the current group
is also available in the communication item named RECORD-TYPE.

414

1421

www.manaraa.com

7-64

If the storage process would create a group with identical values of
identifer items when the group description specifies that duplicates
are not allowed, the storage process is terminated and an error con-
dition is noted.

When an entry (primary group) is stored, its unique internal iden-
tift-lr is moved to the item in user working area named by the RE-
TRIEVAL VIA clause.

IMS

The INSERT (IbRT) statement is used to add a group to the end of a
file declared for output (which may initially be empty) or to insert
a grcup into a file declared for update.

Location of the position for the new group is specified in selection
criteria which must uniquely identify a group at each level in the
hierarchy from the "root" to the parent of the group to be inserted.
The insert is performed so as to preserve ordering and uniqueness of
group identifiers, if either of these have been defined.

Execution of the INSERT statement depends upon the rules specified
for the group schema

RULES = (

specifies two types
rules, designated

during

L* L*
V V V

of rules.
as "physical

data

The
(P)",

defintion.

, LAST*
, HERE

first
"logical

The clause:

)

specifies which of three
(L)", or "virtual (V)",

are to be used for each of the three operations of INSERT, DELETE,
and REPLACE.

Groups participating in a group relation are designated as "physical"
or "logical." The (P) rule for INSERT specifies that a parent group
of a group relation can only be inserted by its "physical" parent
path. If the group is a "logical" dependent both its "physical"
parent and its "logical" parent must already exist in the data base
before the INSERT is executed.

The (L) rule specifies that a parent group can be inserted from
"either side" of the group relation. If a "logical" (or "physical")
parent and a dependent group of a group relation are to be inserted
as one concatenated group under a "physical" (or "logical") parent,
the insert is allowed. If the parent of the concatenated group al-
ready exists in the data base, it remains unchanged, and the dependent
group is inserted.

415
1422

www.manaraa.com

7-65

The (V) rule is the same as the (L) rule except that if the parent
group already exists in the data base, it will be replaced by the
group in the user working area.

The second type of rule specifies how a group is to be inserted int.)
an assembly. If no identifier is declared for a group schema, nep
groups are inserted as the FIRST or the LAST instance in the assem-
bly. If a non-unique identifer item is declared, the new group is
inserted as the FIRST or the LAST of the set of groups having the
same value for the identifier.

HERE specifies that the new group will be inserted where the user
establishes the currency pointer. If a non-unique identifier is
declared and the user does not position the currency pointer among
the set of groups with the Flame identifier value, the system inserts
as the first of the set, thus preserving order.

S C -1

The statement:

WRITE rgroup-name IN file-name [FROM rgroup -narie

is used to transfer data from the user working area to the date base.
The result will be to add a new group if open for output, or to insert
a new group into a file if open for update. End of file marks are
written automatically when the processing proceeds from one group
schema to another or one level up to another in the data hierarchy.
The location to add or insert the data must be found by the programmer
issuing SEEK or FIND statements.

The programming user is required to provide values for all items
in the groups to be written. For those items not hound to the
program, the system automatically supplies null values or zero
length.

7.5.3.2 Change

Change statements are used to change the item values within instances
of entries and groups which previously existed within the data base.

COBOL

No explicit change statement is provided. Change ii accomplished by
reading an entry into the user working area, changing it in the
program, then writing the changed entry to the data base. For direct
access storage files, a WRITE with an existing entry identifier ("key")
will overwrite the previous instance of that entry.

416

423

www.manaraa.com

7-66

DBTG

The statement:

MODIFY [group-name] 1
group-name ; item-name-1 [, item-name-2]

[USING item-name-3 [, item-name-4]..]

is used to replace the contents of all or named items in a group in
the data base with values from like-named data items in the user
working area. The affected group is the current of run unit. Naming
the group serves as a credibility check on the type of the current
group of the run unit. The values of those items excluded or not in
the auxiliary data definition remain unchanged.

Data items which are defined to be used for parent selection, de-
pendent ordering, calculation of a unique internal identifier, or
constructing an index to search on dependent gruups, may be modified.
The system makes any required modifications in group relation
parent-dependent relationships or in dependent group ordering to main-
tain the data base in accordance with the data definition.

The MODIFY statement is not executed if it would violate any "dupli-
cates not allowed" clause. The MODIFY is also not executed if the
current group has been modified by a concurrent run unit since the
object group became current for this run unit or since a KEEP was
issued on the object group.

IDS

To modify the contents of all or selected items of the current group
and to relink any "chain" which may be affected by the modification
of an "identifier" item, the following statement is used:

MODIFY
item- name -1 item- name -2]...-2]...

CURRENT group-name [item-name-1 [, item-name-2]..]

The "current group-name" option is
group is to be modified only if it
no modification takes place and an
Under this option, if no items are
modified.

424

used to specify that the current
is of the type named. Otherwise,
error condition is returned.
named, all items in the group are

www.manaraa.com

7-67

When an ordering item is modified, the group is relinked in accor-
dance with the new value of its identifier item. When modifying
a randomizing item, the dependent group is relinked into its
relation according to the new value. When the item modified is a
MATCH-KEY item, the association of the current group with its
parent is changed. The group is delinked from its current parent,
its new parent is retrieved, and the group is linked to its new
parent according to the ORDER clause for the relation. The group
then is a dependent to a different parent. In no case is a group
ever physically moved from one relation to another. Consequently,
an attempt to modify the identifier item of a "primary" group re-
sults in an error condition.

If the successful execution of the MODIFY statement would create
DUPLICATE groups in relations where they are not allowed, the
modification will not be executed.

INS

The REPLACE (REPL) statement is used to modify data in an existing
group. The group to be modified and replaced must first be
obtained by a successful GET HOLD Aatement- The REPLACE must be
the next DML statement after the GET HOLD. Between the GET HOLD
and the REPLACE all ds:.sired modifications are made to the group
in the user working area.

The group identifier item must not be changed.

The (P) rule (see 7.5.3.1) for REPLACE specifies that the group can
only be changed by its "physical" parent path. The (L) rule is
the same as (P) except that the run unit is not notified if the rule
is violated. Under the (V) rule the group can be changed from either
its "logical" or "physical" path.

SC-1

The replace statement to modify values in existing groups:

REPLACE group/item-name IN file-name [FROM rgroup-name] [condj

always advances through the data. The modified data is not output
from the system buffer to secondary storage until the next state-
ment advances the data pointer. This allows the user to issue RE-
PLACE THIS statements on the data (see 7.5.2.4), causing the system
to step back the data pointer to the start of the last group pro-
cessed and modify it with the contents of the user working area.

The REPLACE statement can be used to change values of data items
which are specified as ordering items. The system does not check
to ensure that an ordering is maintained.

418
425

www.manaraa.com

7-68

7.5.3.3 Delete

Most systems provide statements to delete data from the data base.
Systems that permit some sort of parent-dependent relationship in
the data structure may take various approaches to handling the de-
pendent data when a statement is issued to delete the parent.

COBOL

No explicit statement is provided. For sequential files, not issuing
a WRITE will effectively delete that instance from the output file.
For direct access storage files, the user can write null data or
establish his own delete indicator as an additional item in the entry.
(This is currently under review by the CODASYL Programming Language
Committee.)

DBTG

The statement:
[ONLY

DELETE [group-name] SELECTIVE
ALL

is used to delete the current group of run unit from the data base.
The group is removed from group relations in which it 7.articipates
based upon the qualification options:

No qualification - the group is only deleted if it has no
dependents

ONLY -deletes the group and any MANDATORY dependents
recursively, and removes but does not delete
OPTIONAL. dependents from the group relation.

SELECTIVE -as ONLY but also deletes OPTIONAL dependents
recursively which are not dependents on any
other group relation.

ALL -deletes all dependent groups recursively (at
lower "levels") whether MANDATORY or OPTIONAL
dependent groups.

As a result of a successful deletion the current of run unit is set
to null (note that NEXT , PRIOR, etc. are still accessible).

Delete is not executed if the current group has been modified by a
concurrent run unit since the object group become current or since
a KEEP was issued on the object group. Delete is also not executed
if the current group is not of the named type.

4 19

426

www.manaraa.com

7-69

IDS

The statement:

DELETE [CURRENT group-name-1 RECORD]

[ON-clause-1]

[ELSE ON-clause-2]...

Where the ON-clause is defined as:

ON group-name-2 DETAIL

[MOVE TO UWA)

[HEAD relation-name CHAIN]

[PERFORM procedure-name-1]

[GO TO procedure-name-2]

is used to delete the current group and remove it from all relations
in which it is a dependent, to delete all of its dependent groups,
and, optionally, to perform certain functions when specified depen-
dent group types are accessed during the deletion process. The
execution of a delete statement makes the current group unavailable
for further processing. Any subsequent attempt to access such a
group results in an error condition.

If a group to be deleted is a parent with existing dependent groups,
the system deletes all such dependents, beginning at the lowest
level in the structure, before deleting the parent under consideration.

The "CURRENT group-name-1 RECORD" option is used to specify that
the current group is to be deleted only if it is of the type named.
Otherwise no deletion takes place and an error code is returned to
the run unit.

The "ON-clause" is used to interrupt the deletion process each time
a group of the type named is accessed. Under this condition, the
various statements immediately following are executed prior to the
deletion of the object group. After the execution of these state-
ments, the deletion process continues, unless a GO TO statement was
present in which case control tranfers to the named procedure.

The deletion process can be :interrupted when more than one group type
is accessed by using additional ON-clauses. When a dependent group
is accessed and its type is not specified in an ON-clause, it is
deleted no mally.

420

427

www.manaraa.com

7-70

The MOVE TO UWA statement under deletion control does not permit
selective moves of data items (see 7.5.2.3).

If a PRIOR link exists in the deleted dependent group, the storage
space is immediately available. Otherwise a flag is set so that
the next time the dependent "chain" is traversed, the system can
delink the previously delete! group and make the storage space
available.

IMS

With DELETE (DLET) the specified group is logically deleted from
the file including all of its dependent groups at all lower levels
depending upon the delete rules for it and its dependents. The
group is identified by a prior GET HOLD statement and the delete must
be the next action on the file.

Under the (P) rule (see 7.5.3.1) the group can only be deleted by
its "physical" parent path. If a "logical" parent group participates
on one or more group relations, it may not be deleted until all
"logical" dependents are deleted through their "logical" parent path.
If the defined group is a dependent group, it must be deleted first
from its "logical" parent path and then from its"physical" parent path.
The (P) delete rule is propagated up the hierarchical path of the
group defined with a (P) delete rule.

The (L) rule specifies that a "logical" parent will remain active
when all "logical" dependents are deleted. It will be removed from
tne data base when deleted from its "physical" path. A "logical"
dependent group can be deleted from either its "logical" or "physical"
parent's path. However, the group remains in the data base and may
be accessed through its non-deleted path. The group is removed from
the data base only when it has been deleted by both its "physical" and
"logical" parent paths.

Under the (V) rule a parent is deleted when it has no "logical" _e-
pendents or its "logical" dependents have delete rules of (V). With
any "logical" dependents without the (V) rule, the parent is marked
deleted on its "physical" path and is removed from the data base only
when its last "logical" dependent is deleted. If a dependent group
is being defined, it can be deleted from either its "logical" or
"physical" parent path.

SC-1

The statement:

t

assembly/file-name [COMPLEX]

DELETE rgroup-name [COMPLEX] IN file-name [cond]
item-name

421
428

www.manaraa.com

7-71

is used to remove data from the data base. To delete a non-optional
item, the entire group must be deleted.

The COMPLEX option is used as a credibility check on the user who
attempts to delete a data structure which contains a repeating
group. The request to delete a "file complex" or a "group complex"
is rejected with an error message if COMPLEX is not specified.

7.5.3.4 Reorder

Statcm:tnts may be provided to reorder the sequence of entires in a
file or groups within an assembly.

COBOL

Within the Procedure Division of a program the user can include a
section to accomplish a sort on a special sort file. The section
can include special processing to be performed on each entry before
and after the sort is executed. The program may contain any number
of sorts, each of which may have its own independent processing
procedures.

The user issues the statement:

SORT file-name-1
ASCENDING]

'KEY item-name-1 [,item-name-2]... 1 ...DESCENDING

[INPUT PROCEDURE section-name-1 [THRU section-name-2]11
USING file-name-2

[OUTPUT. PROCEDURE section-name-3 [THRU section-name-4]
GIVING file-name-3

to initiate the sort process. If the USING and GIVING phrases are
used, the SORT simply writes the entries one by one from file-name-2
into file-name-1, a specially defined sort file, sorts the sort file
according to the hierarchy of item identifiers specified in the SORT
statement and writes the entries into file-name-3. The items used
as sort identifiers mus* appear in each "record description", must
not be variable length items, and may not be repeating items (that
is, contain, or be subordinate to entries that contain, an OCCURS
clause).

If an input procedure is specified, it must contain at least one
RELEASE statement to transfer entries to the sort file, and can con-
tain any other kind of processing to be carried ou, on the entries
before they are written to the sort file. Program transfers cannot
take place between the input procedure and other parts of the user
program.

422
429

www.manaraa.com

7-72

The output procedure is similar except that a RETURN statement is
used to read entries back from the sort file and perform any further
processing of the entry.

The FROM and INTO phrases are used with the RELEASE and RETURN
statements respectively to achieve a dual transfer of data using an
implicit MOVE, just as is done with the WRITE and READ statements.

DBTG

The statement:

ORDER relation-name SET [FOR RUN-UNIT] FOR group-nand

ASCENDING

DESCENDING
KEY IS

RECORD-NAME
DATABASE-KEY
item-name-1 [,item -name -2]...

causes all, or specified dependent groups in the named relation
to be logically reordered in accordance with the items specified.
The current group determines the parent whose dependents will be
ordered. The basis for the ordering is provided by group name, unique
internal identifier, or a named set of sequencer items. If the FOR
group-name clause is not used, then the data items must appear in all
groups. If the FOR RUN-UNIT option is specified the reordering of
the relation ("set") is local to the run unit and disappears on ter-
mination of the run unit. That is, the original ordering the re-
lation is re-established upon termination of the run unit.

IDS

The SORT statement is used to reorder the dependent groups in a re-
lation. The COBOL SORT is used and all rules for its use must be
observed.

The group description of the special sort-file must specify as its
first items:

-prior reference item
- current reference item
-sort item 1
- sort item 2

-423
30

www.manaraa.com

7-73

The input procedure must:

- RETRIEVE the groups to be sorted,
- MOVE the PRIOR reference to the

prior reference item.
MOVE the CURRENT reference to the

item in the sort group
-MOVE the required data items into

the sort key items.
RELEASE the sort group

The using file-name option requires the named file to be of the
described format. The groups must be equivalent to those produced
by using the input procedure option. All groups must be present in
the selected relation.

The group relation, from which the groups to be sorted are drawn,
may contain multiple group types. If only one type of group is
selected for sorting, the selected sorted groups will be placed
immediately following the parent group. The re_maining group types
will retain their relative order in the relation after all of the
selected sorted group:,.

At the completion of SORT, the last group in the sort sequence will
be current of the program, current of type, current of relation
name, and its data items will be moved to the user working area. It
will not be current in any other relation in which it participates.

The "giving relation-name" option is used to name the new relation
formed from the sort-file of sorted groups. Then in the output
procedure, the RETURN statement is used to relink the sorted groups
and make them available one at a time. Each group is moved to the
user working area, and is made current of 1 'scram, current of type,
and current of relation-name.

INS

No facility is provided to the programming user or the Data
Administrator.

SC-1

There is no DML statement available to the programming user to
accomplish reordering.

The system provides an independent Restructure function which enables
the Data Administrator to reorder any file in the data base. The
Restructure function uses the sort software provided by the manu-
facturer with the operating system.

424
431

www.manaraa.com

7-74

7.4.3.5 Reorganize

Certain statements may be provided to perform some form of reorganiza-
tion of the data base directly from a program, such as the rearrange-
ment of entries in files or of dependent groups in group relations.
These statements do not result in a change in the content of the data
base.

DBTG

The statement:

INSERT [group-name] INTO
A{-

relation-name-1 [, relation - name -2J...

SETS

is used to make the current group of the run unit, a dependent group
of all or named relations on which it is defined as OPTIONAL. The
specific parent in each relation is determined by the current group
of each relation. The inserted group becomes current on all affected
relations. The group-name is used to ensure that the current group
is of the type named. The INSERT statement is not executed if
duplicate group identifiers would result in any relation where dupl-
icates are not allowed.

The statement:

REMOVE [group-name] FROM
relation-name-1 [, relation-name-2]...

ALL SETS

operates in the same way as the INSERT statement to remove the
current group of run unit from all or named relations, provided that
the group is definer as an OPTIONAL dependent.

COBOL, IDS, IMS, SC-1

none

7.5.4 Special purpose statements

The programming facilities discussed so far have been concerned
primarily with data stored on secondary storage devices. DML state-
ments are provided to control and manipulate data stored on secon-
dary storage devices and to transfer data between secondary storage
and primary storage (high speed core memory) where it can be re-
ferenced by the host language program.

425.

1432

www.manaraa.com

7-75

Some systems offer additional programming facilities for handling
data in a communiciations environment or handling data wholly
within primary storage. If data base management is only concerned
with the control and manipulation of a data base stored on secondary
storage, then such special purpose statements would not be considered
part of the generalized data base management system. However, it
can be argued that such facilities are logically a part of data base
management.

7.5.4.1 Tehle handling

Table handling statements are used to manipulate replicating data
structures which are wholly within primary storage at the time of
statement execution. The replicating data structures could be
groups of a repeating group schema. Such an assembly or 'subassembly'
may be created by the host language program or it may be populated
by retrieving data from the data base in secondary storage. It is

even possible for the system to allow a single statement to retrieve
multiple replications of a group schema.

COBOL

A table handling capability is provided. A table is defined in the
data division by adding an OCCURS clause to an item or group defi-
nition. The user working area is then established to contain all
replications of the item or group. When a READ statement is used to
retrieve an entry from the data base, all replications of each re-
peating group are plated in the user working area.

The OCCURS clause takes the following form:

-1 TIMES
OCCURS

integer-2 TO integer-3 TIMES FFENDING ON item-name-d1

[{

ASCENDING
KEY IS item-name-2 [

DESCENDING

[iNDEXED BY index-name-1 [, index-name-2]..]

The replicating group so defined must be of fixed size. It can be
defined to occur a fixed number of times using integer-1 or a vari-
able number of times using integer-2 and integer-3 to specify the
minumim and maximum number of replications, respectively. The minimum

may be zero. The DEPENDING option is used to refer to a count item
which always reflects the number of replications. An ordering may
optionally be defined on the table. The data items must be part of

the repeating group and not replicate within each instance of the
repeating group. The ordering items are listed in decreasing order
of significance.

426
433

www.manaraa.com

7-76

The use of an OCCURS clause on an item or group which is subordinate
to a group defined with an OCCURS clause (that is, a repeating group)
gives rise to a multidimensional table. For example:

02 BAKER; OCCURS 20 TIMES;

03 CHARLIE;

03 DOG; OCCURS 5 TIMES;

04 EASY;

defines DOG as a structure of a two dimensional table. A maximum of
three dimensioc.s are permitted.

Program references to structures in a table must refer to a single
replication. This is done through subscripting or "indexing". The
subscript may be an integer or a named item containing an integer.
A subscript of 1 refers to the first replication in the table.

When "indexing" is used, the INDEXED BY option appears in the OCCURS
clause and names "index" items which are analogous to index registers.
The "index" items are dependent upon the hardware and cannot be
associated with any data hierarchy. When referencing replications
in a table the "index" names are written after the repeating group
name and enclosed in parentheses. Relative "indexing" is specified
by adding or subtracting an integer, literal or named item from the
"index" name. For example:

DOG(INDEX1 , INDEX2 -3)

The contents of an "index" must be established with a SET statement
prior to executing a reference to the table using the "index".

The statement:

SET
item-name-1 [, item-name-2)...

[1P"tr-171DOWN BYJ
item -name

index-name-31

index-name-1 [, index-name-2]..
TO item-name

literal

{i

is used to initialize, increment, or decrement one or more named
"indexes" with the value of another "index", an Item containing an
integer, or a literal integer. The increment or decrement may be a
negative integer. The SET statement also allows the contents of a
named "index" to be stored in one or more named data items.

121

4314

www.manaraa.com

7-77

The SEARCH statement provides facilities, through its two options,
for producing sequential and controlled (for example, binary)
searches. In using the search statement the programming user may
vary an associated "index" name or an associated item name. This

statement also provides facilities for execution of imperative
statements when certain conditions are true and includes an AT END
phrase.

group-name [VARYING [index-name
item-name

SEARCH
ALL group-name

[; AT END imperative-statement]

lWHEN condition imperative- statement

NEXT SENTENCE[_I

...

The first search format starts with the replication in the table
specified by the current value of the index. Successive replications
ere examined until one is found which satisfies any one of the
conditions specified or the end of the table is reached. When the
search terminates, the WHEN or END clause is invoked, and the "index"
name will refer to the found replication. The ALL format is used to
perform a controlled search on the table; the method being left up
to the system implementor. Tae definition of a condition corresponds

to that used in Interrogation (see Chapter 4).

DBTG, IDS, IMS, SC-1

none, except for those facilities provided in the COBOL'host language.

7.5.4.2 Communications

Some systems provide statements to transfer groups of data items,
called messages or transactions, between the user working area and
queues which are often associated with external terminal devices.

Communication facility statements may be considered part of the data
base management system when two points are considered. Incoming
transactions may be used to interrogate or update the data base.
Secondly, the transaction queues in the communications system may be
considered a part of the data base.

COBOL

The characteristics of the communication devices and their associated
queues are defined in the "Communication Description Area" of the
"Data Division". Queues can be constructed in a hierarchy and handled
using various disciplines such as fifo, lifo, or some priority scheme.

428

435

www.manaraa.com

7-78

The RECEIVE statement is used to transfer a transaction from the queue
of a named device to the user working area Alternata action is
taken if the queue is empty. The SEND statement is used to transfer
a transaction from the user working area to the queue of a named
device. The statement can specify in addition that a, "end of message"
signal be transferred (when the message is built up in pieces) or an
"end of transmission" signal be transferred. These statements are
analogous to the nap and WRITE statements respectively.

The DISABLE statement is used to stop the transmission of transactions
between a named external communication device and its associated
queue. The inhibition can apply to input, output or both. The ENABLE
statement is used to permit the transmission of transactions between
a named device and its queue in either or both modes. Both statements
have an associated security lock to prevent indiscriminate use of the
facility by a programming user who is not aware of the total network
environment, and who may therefore disrupt systems functions by the
untimely enabling or disabling of a queue.

The ACCEPT and DISPLAY statements are used to transmit data from and
to, respectively, a low speed communication device. No queuing of
messages takes place.

IMS

The transfer of transactions is accomplished using the same state-
ments provided for data base manipulation. The file name refers to
a transaction queue and is defined in the "Program Communication
Block (PCB)".

A transaction can consist of multiple grou, ("segments") of items
where each group is at most 136 characters. The GET UNIQUE (GU)
statement is used to transfer the first group of a named transaction
from its associated queue to the user working ara. Subsequent GET
NEXT (GIB statements are used to retrieve the remaining groups of
a transaction.

For programs that process multiple transaction types, the text of
the input transaction must be examined to determine the current type.
Exception condition codes are used to indicate end of transaction
(last group) or end of queue (last transaction).

The INSERT statement is used to transfer data from the user working
area to a queue of transactions. An INSERT is issued for each group
making up a transaction. The enabling and disabling of terminals is
done at system generation time and is not under the control of the
programming user.

DBTG, IDS, SC-1

none, unless provided in the host language.

429.
436

www.manaraa.com

7-79

7.6 Facilities for system programmers

The data manipulation language statements of conventional programming
facilities are intended primarily for the application programmer.
He generally knows something about the logical structure of the data
base which he is processing and high machine efficiency is often not
an overwhelming consideration.

However, for the programming user who is writing system programs,
such as an interrogation or update function, the need for generality
and efficiency becomes more important - generality because he does
not usually know he data structure in advance of writing the program
.yet the program must be able to deal with any kind of structure
'which is definable to the system; efficiency because system programs
tend to be run more frequently.

The opportunity for greater efficiency can be possible by providing
multiple levels of interface. Greater generality is possible when
the programming user can access the stored data definition and deal
with a general auxiliary data definition.

7.6.1 Multiple levels of ir.cerface

Some systems may provide more than one level of interface. In the
following diagram, three possible interfaces can be identified:

>I and
SCAN

ipARSE

VALIDATE
and
INTERPRET

Call
Processing
Module

First, the narrative or free form of writing the DML statements is
most convenient for human users. This form also affords maximum
opportunity for error checking during both the scanning phase and
the interpretation phase.

The second interface is more like a machine interface using a fixed
or tabular format. When a generalized program is written the
programmer does not always know what DML statement is required, rather
the program must be written so that during execution it will examine
the situation and issue the appropriate statements. In such cases
the fixed format is more convenient. It is also more efficient since
less scanning is required.

480
1431.

www.manaraa.com

7-80

The third interface identified does not involve any scanning, parsing,
validation or interpretation of the DML st,tement. Such an interface
will usually be reserved for advanced system programmers and throughly
tested and debugged programs. The chief advantage of this interface
lies in the efficiency that it affords in going directly to the pro-
cessing module. This would likely be the interface used by the fre-
quently-executed function modules such as interrogate and update.

From another point of view, it may be possible to classify the state-
ments into different levels based upon the grossness or level of
abstraction with which the data is referenced. Some ccatements may
fall into a simpler, more primitive class while others may be a com-
posite of the functions of more primitive statements. Some state-
ments may reference data at the detailed physical I/O level, while
others deal with data in terms of its logical structure.

None of the five systems offer a machine-oriented interface. None
offer statements at the detailed physical I/O level.

IMS comes close by offering a separator rather than narrative form
of statement.

SC-1 does have an internal table which is used to contain any DML
statement in a standard way. The verbs and all their modifiers are
coded into a few bytes. Although not encouraged, it is possible for
a knowledgeable systems programmer to use this interface directly.

7.6.2 Accessing the stored data definition

The most important requirement for a generalized systems programmer
is the ability to access the stored data definition. The generalized
programmer does not know the data base structure in advance. He must
write his program in such a way as to discover the structure being
dealt with and then construct the appropriate DML statements. Often
he will have no more than a file name and a few item names at some
unknown level in the data hierarchy.

COBOL

There is no explicit provision for an auxiliary data definition which
is different from the data definition. The definition of the data
base is part of the program and hence the programming user knows the
complete definition at the time the program is written.

DBTG

The language makes no explicit provision for accessing the stored
data definition. It may be possible through an assembly language
subprogram depending upon the implementation.

431
438

www.manaraa.com

7 -81

IDS

No access to the stored data definition. It is not required since
a complete definition of the data base must be included in the Data
Division of the host language program.

IMS

Access to the stored data definition by the programming user is not
permitted. The programming user sees only the auxiliary data def-
inition as specified in his "PCB".

SC-1

The data definition is stored in the data base and treated just like
other data in the system. If a programming user has the required
security clearance he can access any part of the stored data defi-
nition using the normal DML statements.

7.6.3 Handling a generalized auxiliary data definition

Sometimes a programming user has to write a program in a generalized
fashion, for example, to develop a generalized interrogation cap-
ability for a non-programming user. In doing so, he is like a
systems programmer. He is faced with the problem of referencing the
data base and working areas without knowing the names of or relation-
ships among the data elements he is dealing with in the data base
structure.

If a programming user does not know the definition of the data in
advance, he will also not be in a position to provide a complete
auxiliary data definition and the user working area at the time of
writing his program. To properly satisfy the situation, the system
would have to allow the definition of the user working area to be
deferred until program execution.

Some systems will operate with no items or only identifier items
being defined in groups or entries. If the system assumes no
definition of the remaining items, then the program must know the
definition or obtain it elsewhere. This not not really aiding the
generalized programmer but rather compounding his problem.

COBOL

Auxiliary data used by the program must be completely defined and
correspond exactly to the data base definition. In fact, they are
one and the same.

DBTG

The auxiliary data definition must be completely specified at time
of program writing.

4:32
439

www.manaraa.com

7-82

Various DML statements allow the user to name a group type which is
then used as a credibility check on the type of the current group
before the statement is executed.

IDS

The auxiliary data definition must be specified at time of program
writing. It may be incomplete, thereby leaving the program the
responsibility of knowing how to interpret items in the user working
area.

IMS

For each group, only the identifier items need be defined. The

program must use exactly the same definition as is in the stored data
definition for all defined items. Undefined items are the responsi-
bility of the program to interpret.

The user can issue DML statements without naming a group type. The
name, level, and identifier item values of the current group are all
accessible in the PCB after the statement execution.

SC-1

It is possible for the programming user to defer auxiliary data def-
inition until program execution. A special copy option is provided
at the time of auxiliary data definition, that is, "Bindlist" def-
inition. When this is encountered by the execution of an open
statement, the data base definition for the named file is copied and
becomes the auxiliary data definition for the program. This facility
was specifically designed as an aid to the generalized programmer.

433

44o

www.manaraa.com

8. DATA ADMINISTRATION FUNCTIONS

The role of an individual called tne data administrator
(sometimes data base administrator or data manager) varies
considerably depending on the class of data management
system and the capabilities it offers. When on-line
capability is available, the role of the data administrator
could frequently be merged with that of the systems administrator.
However it is possible to identify a meaningful division of
responsibility between these two, inasmuch as the systems
administrator has a well identifiable role in the environment of
any kind of time sharing or communications oriented operating
system.

It is useful to. identify two major differences between the role
of the data administrator and that of the systems administrator.
First the data structure and information content of the data base
should have significant meaning to the data administrator, more
so in fact than to any other individual in the enterprise.

The data administrator has the function of using his superior
knowledge of the set of applications using the data base in order
to maintain its integrity and security. In this sense he is
initially responsible for all issues concerning data definition
(see Chapter 3) and creation (see Chapter 6). Specific data
administration functions are identified as

assignment of pass keys
specifying requirements for logging
specifying an audit trail
storage of permanent programs
control over scheduling algorithm

To the systems administrator, the data base is merely a large
quantity of stored representations, which as far as he knows
may possibly be data, possibly programs, for which he has a
full time responsibility. The systems administrator may even
sit in the machine room, or ac least have his own privileged
monitoring console, so that he can control operations on a minute
by minute basis. In case of difficulties he may invoke procedures,
(possibly defined to him by a data administrator) to recover from
breakdown and reconstruct (or restore) the data base. There is
also a potential overlap between the role of the systems administrator
and the machine room supervisor. In fact the clearer separation one

14143.

434

www.manaraa.com

8-2

identifies between the data administrator and the systems
administrator, the closer the role of the latter merges into
every day machine room supervision.

The role of a data administrator, in the sense: discussed here,
may be influenced by whether the data base management system
functions in an on-line mode, or itself provides on-line
capability. With no on-line capability, his job may be more
oriented around the running of specific jobs such as file
creation and the establishment and enforcement of people oriented
procedures to control the integrity and use of the system. If
on-line capability is provided, then protection of integrity becomes
a system problem and the data base management system may itself
provide special facilities for controlling the use of the system.

Restricting consideration of the data administrator to functions
which call for an intimate knowledge of the data structure, it
is possible to consider which specific functions can properly
be ascribed to a single authority who may be one individual or a
group of individuals depending on the size of the data base and
the level of activity connected with it.

It is also of importance how the privileged functions for the
data administrator are reserved for his use. In an on-line
environment, a special password or a specially assigned console
may be the technique chosen. In a batch processing environment
the privileged use would normally be based on machine room
procedures. In either case, some of his options may be exercised
at the time the data base management system is generated; other-
wise this happens later.

GAS

The functions of file creation (including data definition and
security definition) are implicitly identified as reserved for
use by what is referred to as "installation management."

MARK IV, NIPS/FFS, COBOL

No specific function is identified as restricted for use by
a data administrator or other privileged user.

TDMS

No specific function is identified as restricted for use by a
privileged user. However use of the &DEPT operating system calls
for a"security officier" who is responsible for file security.

UL /l

The functions of file creation (including data definition) and
file restructuring are explicitly identified as reserved for a
data administrator. In the "Establishment Division", the data
administrator must define the initial data structure and may ent

1442

435

www.manaraa.com

8-3

any entry level validation criterion and a number of permanent
computational procedures to be used either in the validaticn
criterion or in subsequent interrogations and update.

In addition, the data administrator is the only individual
allowed to use the "Revision Division" (see 3.9). With this
capability, he may restructure the Aata file to allow new items
or to delete existing areas from the schema.

The technique by which the data administrator functions are
reserved for his exclusive use, relies completely on adminis-
trative procedures. In fact, any individual at an installation
may use any part of the system.

DBTG

A data administrator is identified who is responsible for
specifying the data structure or "schema" for the whole data
base and possibly for specifying one or more "sub-schemas" for
invocation by the user programs accessing a portion of the data
base. He is ascribed three main functions, namely organizing,
monitoring and reorganizing. Organizing is defined to include
the assignment of data names, selection of search strategies,
assignment of security requirements and the assignment of parts
of the data base called "areas" to specific media types.

Monitoring the data base includes its usage, response, and
breach of privacy. Logging and sampling are tools suggested
for this purpose with a potential reorganization being the end
result.

Reorganizing includes modification to the stored data definition,
restructuring the data base to reflect changes in the stored
data definition and initiating clean up or "garbage collection."

IDS

No specific function is identified as for use by a data adminis-
Ireton However specification of the data definition would
normally be performed by a single authority and capability is
provided for defining sub-structures which are for use by applications
programmers. The other data definition must be stored in the user
programs.

IMS

Only one administrative function is identified for this systetl
under the collective name of Systems Operation. Most of the
functions can be identified as data administrator functions,
although some would be typical for a systems administrator.

443

436

www.manaraa.com

8-4

The function of preparing and entering the data definition is
explicitly reserved for the data administrator. A program
must be specially written to create the first instance of the
data file. The data definition process is considered to sub-
sume control of security, specification of storage media type,
control over storage structure and the assignment of the names
of groups which may be used in the primary data definition and
in the applications. When non-hierarchic group relations exist,
special utilities must be used in data definition.

The initiation of logging and the creation and update of the
library file of transaction programs are both explicit functions
for the data administrator. At systems generation time and at
data definition Arne, he may exercise different levels of control
over the scheduling algorithm. It may be adjusted within the
prior constraints from a master terminal (see 8.1).

SC-1

The role of a data administrator is identified to include data
definition, standardization of data names, restructuring of
the data, control over storage media type, specification of
security requirements, supervision of the auxiliary data
definitions for programs and for update transactions, and speci-
fications of the validation process. It is possible for the
user of programming facilities (see Chapter 7) to augument the
capabilities specifically provided.

8.1 Systems administrator functions

The precise role of the systems administrator with respect to a
data base management system depends on the class and capabilities
of the system itself and on the capabilities of the operating
system under which the data base system is used. In one case,
the data base management system may provide capabilities which,
in another case, are an inherent function of the operating system.

Time sharing and communications oriented operating systems
frequently provide many of the monitoring and support facilities
which enable the system administrator to assume responsibility
for the correct functioning of a set of programmed applications
which are executing in a real time environment. Whether a data
base management system is a part of this set of applications or
not normally has no effect on the task of the system administrator.
He should retain responsibility for allocating the physical
resources of the machine, assuming a set of competing applications,
one or more of which may use the data base management system. In

this case an operating system component may monitor the use of the
physical resources assigned and report to the systems administrator
on the effectiveness with which they are being used. Typical
facilities for use by a systems administrator include check point
printing of the status of the data and the programs and the dumping
of transaction queues at regular or at specific points in time.

437
444

www.manaraa.com

-5

In view of his close involvement with the running of the systems
(operating and data base management), the systems administrator
may have a privileged access via a specially dedicated terminal
or a special pass word from any terminal. He may in fact perform
as a highly trained operator sometimes called a "master terminal
operator" and sit at a control console, watching displays or
typeouts which give him information regarding the functioning
of the system.

The tools available to the systems administrator to recognize
system malfunction vary, and the tools provided to facilitate
recovery from such malfunction can vary even more widely. The
use of such tools and the data administrator's degree of in-
volvement with their use are also matters which depend largely
on the operating environment in which the data base management
system is used (see Chapter 10).

GIS, MARK IV, NIPS/FFS, TDMS, UL/1 COBOL, DBTG IDS

There is no explicit concept of a systems administrator associated
with the data base management system. The capabilities which
would be ascribed to such an individual are in all cares considered
part of the use of the operating system.

IMS

A user environment may chose whether or not to be on-line. If
so, it is necessary to have a master terminal. This may be the
console typewriter of it may be a remote terminal device. Normally
a master terminal should be provided and its operator is regarded
as being under supervision of the "systems operation function."

SC-1

A job definition function is provided to permit dynamic modification
of the operating system's job stream. The execution of all programs
including the self-contained functions always depends upon a prior
execution of Job Definition to generate the required job control
statements based on the stored storage structure definition. The
output of Job Definition can be catalogued and later invoked by a
job request.

8.2 Data administrator initiated processes affecting other users

The tasks of the data administrator may be divided into two main
classes - those which he is responsible for, such as creation
(see Chapter 6) and restructuring (see 3.9) and those in which he
creates an environment for the other users of the data base. In

the second class, he calls upon his superior knowledge of the data
base and its continued usage to set parameter- which constrain the
various users, programmer and other, in the nature of the processes
they may perform on the data base. Such processes could include

438`
445

www.manaraa.com

8-6

assignment of pass keys, specification of logging and audit trail,
and the selection of interrogation, updates and other programs
to be stored permane-t3y. Finally he might also control the
actions which may be performed in such programs.

8.2.1 Assignment of pass keys

The declaration of privacy locks on any structural level in the
data base is part of the data definition facility (see Chapter 3).
The initial assignment and subsequent modifications of keys to
open these locks are necessarily functions to be performed by the
data administrator, whether he uses software or paper procedures.
There is potential overlap in an on-line environment with the
role of a systems administrator in assigning passwords to users
which enable them to use the operating system and its associated
language compilers from a terminal. However the operating systems
password concept is potentially less complex than the data base
management system privacy locks and keys, where a key may involve
the creation of a procedure, possibly using the operating systems
password as one of the input parameters.

GIS

Definition of security is performed with a separate utility task.
A table of user security codes and corresponding data access codes
is set up by the utility task. User procedures carry a security
code which determines, through the table, the data which the
procedure can access.

NIPS/FFS

A security lock code is appended to each file. A similar key code
must be included in each interrogation. If they are different, a
warning message is included in the output but the interrogation is
completed. The maintenance of security is a function of the
human administration.

TDMS

A security key may be centrally assigned to each user through the
ADEPT operating system facilities. The file of such keys may be
updated only from a security operations console. A periodic
programmed check on the security status is also provided.

MARK IV, UL/1, COBOL

No capaaility is provided.

DBTG

A programmer must include a PRIVACY paragraph in the Identification
Division of his COBOL program if the data base schema has privacy

139
446

www.manaraa.com

8-7

locks on any level. The features of the PRIVACY paragraph are
considered programming facilities (see 7.4.5). Administration
of the literal-names and procedure-names used as privacy keys is
the responsibility of the data administrator.

IDS

Specification of security is essentially a programming facility
(see 7.4.5) because the definition of the data structure for the
data base and its locks and keys is all embedded within the program.

IMS

The data administrator may define pass words using a. special
security maintenance utility. When generating Program Communication
Blocks (PCBs), he must define which program may access a file or
part of a file. A list of programs and the files they may access
must have been created at the time of systems generation. For each
program in the list, the security maintenance utility is used to
assign a pass word and may also include the mapping between physical
and logical terminal names. The logical terminal name may have been
previously defined during generation of the PCB for the given program.
The programmer must use the pass word from one of the designated
terminals at the time he invokes a program which accesses the data
base.

SC-1

Data security is achieved by assigning security restriction levels,
representing an "authority to know".to data items, and class codes
representing a "need to know" to users. The user must satisfy both
types of security restriction in order to access items in the data
base. Every data item in the data base is assigned an authority
level and a set of class codes for access and a set of class codes
for update (see Chapter 3).

Similarly the data administrator assigns an authority level, a set
of access codes and a set of modification class codes to every user
in the system. A system function called User Security List Maintenance
is provided for the exclusive use of the data administrator.

8.2.2 Specifying the logging of modifications to the data base

In a multi-user environment, logging of changes to the data base
may be initiated either by the data administrator (based on his
knowledge of the uncertain accuracy of the processes to be performed
on the data) or by the systems administrator (based on his knowledge
of the unreliable state of the hardware and/or operating system).
If concurrent updating is allowed (see 10.2.1.2), then systems
controlled logging is almost mandatory. If initiation of the logging
is a programmer facility (see Chapter 7) then it would presumably
be performed only for changes to the data base resulting from his

440
447

www.manaraa.com

8-8

program. Also it may be possible for the user of a self-contained
update function to initiate logging (see Chapter 5). Alternatively
logging may be a capability which is inherent in the operating
system or in the data management system and difficult or impossible
to suppress.

Logging is here identified as the process of recording, on a
separate physical medium from the data base, any stored images
which are changed during the processing of values in the data
base. It is possible to have before image logging, after image logging,
and before and after image logging. Normally the quantity of data
logged correspone; co the physical block size transformed between
secondary storage and high speed storage. The logging is performed
specifically to facilitate restart in the case of system breakdown
and the reconstruction of the data base to an earlier and presumably
more correct status. It is a refinement of the practice of
periodically dumping the whole file, which becomes less acceptable
as the size of the data base increases.

The data administrator may have facilities at his disposal to require
that logging be performed for a specific data base. The facility
may consist of a privileged program which only he may use, which
sets certain flags in the data base management systems control tables.
Alternatively logging may be an operating systems function, in which
case the data administrator may have to request the systems administrator
to perform the required logging.

GIS, MARK IV, NIPS/FFS, TDMS, UL/1

There is no centralized control over the initiation of logging.
Any that is provided is an inherent part of the update function
(see Chapter 5) and/or an operating systems capability which may
be invoked by control statements at run-time. Any facility for
periodic dumping is normally provided by the operating system.

COBOL

No capability is provided.

DBTG

No explicit capabilities are identified for the function of logging.
However it would be possible for the data admiAistrator to define .a
procedure to be included in the data definition for the whole data
base in the ON clause. This may be invoked at area, entry and group
relation definition levels. This procedure could be used to log
changes on the use of any programmer facility such as data modifi-
cation statements (see 7.5.3) and/or possibly data retrieval
statements (see 7.5.2).

IDS

Logging of both before and after images is an inherent part of the
data base management system and is difficult to suppress. A

448

A ti

www.manaraa.com

8-9

"journal" file is produced which contains the time at which any
modification to the data base occurs.

IMS

Logging of both before and after images is an inherent part of the
data base management system. It may be totally suppressed at
execution time for all Darts of the data base, but not selectively.
A "journal" file is produced which contains the times at which any
modification to the data base occurs.

SC-1

Capability is provided for centrally controlled before and after
image logging. In the update function (see Chapter 5), a user can
cause logging transaction data after it has successfully been used
to update the data base. The update transaction data definition
includes specifications of a retention time period with a default
of zero days.

8.2.3 Specifying the logging of transactions

In a multi-user environment, the logging of transactions entering
the system from the terminals or the messages being sent by
the system to the terminal can be of value to the data administrator
in monitoring the kind of processing which is taking place during a
period of time. If such a log file is generated, it is used by
the systems administrator (or the master terminal operator) for
recovery and reconstruction purposes. This logging is normally in
the form of a machine readable file used optionally for recovery
purposes or for statistical analysis.

GIS, IIIPS/FFS, TDMS IDS

No capability is provided.

COBOL

The communications capability is a programming facility (see
7.5.4.2). If facilities are provided for logging the flow of
messages between the terminals and the control processor, then
these would normally be part of the operating system.

IMS

Logging of both incoming and outgoint messages is always provided.
Logging of queries can be suppressed, but not of updates. The log
is in the form of a file which can be analyzed to derive performance
and activity statistics.

449

442
:111111.m1111=11111

www.manaraa.com

8-10

MARK IV, UL /l, DBTG, SC-1

Not applicable.

8.2.4 Specifying an audit trail

An audit trail report differs from the file that is built up
during the logging process in that the audit trail is specifically
a report designed for study by the data administrator so that he
can scrutinize the events that have taken place during a period
of processing. Under certain circumstances, the log tape and the
audit trail may contain essentially the same information in
different form. However it is more likely that the log tape
contain information regarding the physical resources of the
hardware, whereas an audit trail would contain an indication of
the events which have occurred to alter value content the data
base (including possibly any of its directories) and would not
necessarily be oriented toward hardware.

The generation of an audit trail could be initiated by the data
administrator for a given data base, and/or for a specific period
of time and/or under other specified conditions. This would then
be a system oriented audit trail. As with the logging process, it
is also conceivable than an audit trail could be initiated either
by a programming user (see Chapter 7) or by the user of a self-
contained function

GIS

The generation of an audit trail during UPDATE procedures is
controlled through parameters supplied at data definition time.
The user must redefine the data to change the parameters. Audit
trails may also be produced by explicit user procedures.

MARK IV, NIPS/FFS, TDMS, UL/1

An audit trail can be generated only in a use of the update
function (see Chapter 5).

COBOL

No capability is provided.

DBTG

A centrally initiated audit trail report may be provided in the
same way as the logging of accesses to the data base (see 8.2.2),
namely by use of a procedure defined by the data administrator as
part of the data definition for the whole data base.

443
45o

www.manaraa.com

8-31

IDS

Specification of an audit trail is a programming facility (see
Chapter 7).

IMS. SC-1

An audit trail can be provided only by processing the log tape
(see 8.2.2).

8.2.5 Storage of programs acting on the data base

The concept of a library of programs which have been sufficiently
tested to justify permanent storage on the available physical
resources of the machine goes back to the batch processing monitor
concept. In more recent time sharing operating systems, a terminal
user can usually sorte his files (program or data) between terminal
sessions on the system available storage space.

Within the environment of a data base management system, the
importance of a library of frequently used and thoroughly tested
programs is valid. A program in this latter sense is either a
program in the conventional sense which uses programmer facilities
(see Chapter 7) or a set of specifications to an interrogation
function (see Chapter 4) or an update function (see Chapter 5)
which has been prepared by a non-programmer. Determination of
what is "thoroughly tested" and what is "frequently used" may be
under control of the data administrator.

The preceding entities might be identified as transaction programs,
application programs, or user programs, or some name defining the
nature of the entity such as query or update. As part of the
process of building up the library of frequently used programs
acting on the data base, the data administrator may have the
opportunity to assign an execution priority rating to each program.
This rating would be taken into account when the program is being
executed concurrently for other programs and is considered part
of the operational environment (see Chapter 10).

GIS

Any kind of "task specifications" may be stored by the system in
source form and procedural task specifications such as QUERY
(see Chapter 4) may also be stored in object form. How this saving
is done is a matter for control in the use of the system, rather
than explicit privileged facilities being provided.

MARK IV

It is necessary to store transaction definitions in the system prior
to a run to update the file (see Chapter 5). Frequently used
information requests (see Chapter 4) may be catalogued for subsequent

444'
451

www.manaraa.com

8-12

invocation from a batch stream. How these processes are performed
is a matter for control over the use of the system, rather than
use of explicit privileged facilities being provided.

NIPS/FFS

The conditional expressions and report specifications used in the
interrogation function (see Chapter 4) and the specifications used
in the update function (see Chapter 5) may be stored in a library.
No explicit privileged facilities are provided for control over
these functions.

TDMS

Report descriptions specified using COMPOSE (see Chapter 4) and
MAINTAIN task descriptions (see Chapter 5) may be stored by the
user for subsequent invocation from a terminal. Central control
over what is Etored is a matter of control over the use of the
system.

UL /l

Computational procedure which are to be used frequently may be
stored with the stored data definition in a use of the Establishment
division (see Chapter 6) or the Revision division (see Chapter 3).
Control over the use of these divisions is a matter of control
over the use of the system.

COBOL, DBTG

No centralized capability is provided. However the use of the
COPY clause to store source statements in the COBOL library,
may be centrally administered.

IDS

Storage of programs is an operating systems function. The data
administrator must play an administrative role in controlling
this storage.

IMS

The data administrator must select frequently used programs for
inclusion in the library of such programs. Their names must agree
with a master list of permitted programs. The terminals which are
allowed to invoke a program are defined using the security main-
tenance utility, which generates a security matrix. This matrix
determines which programs may be executed from which logical
terminals.

SC-1

The program library facilities of the operating system is used to
store host language programs and self-contained function. The

452

44

www.manaraa.com

8-13

capability for storing queries and report definition is provided as
part of the interrogation function (see Chapter 4). In the update
function, all transaction data definition and transaction program
definition must be prestored in a library maintained by the update
function (see Chapter 5).

8.2.6 Control over scheduling algorithm

Only the data administrator, with his superior knowledge of the whole
set of applications,can assign priorities to the various programs
to be executed. The number of priority levels may vary and indeed
may itself be a parameter control_able by the data administrator
within the constraints of the system.

The techniques for controlling priority schedules are inherent
in many operating systems (see Chapter 10) and are a part of the
data base management system only in so much as it supplements
existing and inadequate operating system capabilities. The use
of priority scheduling may depend on whether the data base managt-
ment system is being used in a dedicated mode on the machine or
whether it is competing for machine resources with other classes
of processing.

GIS, MARK IV, NIPS/FFS, TDMS, UL/1

No capability is provided.

TDS

Capability is provided in the GECOS III operating systems for
controlling the priority level of application programs. It is
also possible to specify "privity" for a program, namely that it
is considered a component of the operating system.

IMS

There are fifteen priority levels provided. Some transaction
programs may be specified as batch message processing programs
which means that they are to be run in batch mode at some later
point in time when the systems administrator initiates the execution
of a batch stream.

The priority scheme includes Facilities for assigning a limit to
the number of items in a queue, and a corresponding limit priority.
If tile number of transactions in the queue with a given priority
is exceeded, then the priority is changed automatically to the
limit priority in order to cause it to be run sooner.

COBOL, DBTG, SC-1

No capability is provided.

446
453

www.manaraa.com

9. STORAGE STRUCTURE

Storage structure is the user data, as actually stored on physical
media. It must be distinguished from the data structure (see
Chapter 2), which is the user's conception of the data, in terms
of its logical relationships. A single data structure can be
stored in different ways, resulting in different storage struc-
tures, and in fact, many systems select from several different
storage techniques, depending on how the data is to be used.
A given basic storage structure may be implemented in various
ways, on various secondary storage devices. The nature of the
storage structure is further conditioned by the characteristics
of those devices, and of the operating system.

The data is ultimately stored as a continuous string of bits or
characters, and the system must set up correspondences between
logical data elements, such as item and groups, and the portions
of the string which constitute their instances. The nature of
this correspondence differs from level to level in the structure.
The method used to move from one element to another logically
related ona also varies with the level.

To improve efficiency of accessing the stored data, the user may
be given some degree of control over the storage organization,
either overall, or on a detailed element-by-element level.

9.1 Techniques in item and group level storage

Given a string of characters representing, say, an assembly
(set of group instances), the system must be able to isolate the
individual group instances and item values. A system can accom-
plish this by using one or more techniques analogous to those
associated with system languages (see 1.4). These are:

An element (item or group) appears at a known
position in the string.

The elements are separated by some distinctive
separation symbol.

Each element is accompanied by a symbol which
identifies or names it.

447
455

www.manaraa.com

9-2

The ways in which these are used, and the complexity of the
resulting relationship between logical structures and stored
data, are determined to a large extent by the variability
allowed in various item and group attributes, for instance

item value length (see 2.1.2.2)

item value existence (see 2.1.3)

number of members in an assembly (see 2.2).

If all attributes are fixed, the system can in effect set up a
table giving the correspondence between item name, and position
in the string of the first character of the value (position,
that is, relative to some known point, such as the beginning
of the group).

Such a table might effectively have the form

Starting
Item schema name character position

INITIALS 1

LAST NAME 3

SALARY 25

1ST SKILL 30

This approach may require more space, since room has to be left
'for the longest possible value of each item, and may restrict
the number of occurrences of a group to a predefined maximum.
In a variation of this method, each entry contains an individual
table of item value starting points for that entry.

A method of solving the variable length item problem is to store
the length of the value immediately before the value itself in
the string. Similarly, the number of group instances in an
assembly may be stored as a data value (often called a "count
item value") preceding it. Use of these techniques is shown in
the following example of an entry:

Assembly

SKILL 1 SKILL 2
t t

NAME SALARY TITLE TITLE

7JASMITH1 2 5 0 0 2 5 7 1 1 5ENGNR5 7 1 2 4TECH

1 t

4
I

Length of Count Length of
NAME Item TITLE

448
456

www.manaraa.com

9-3

The system can determine the starting points of items and groups
and the length of the entry by using the underlined values, and
the lengths of fixed length items. With this technique, a length
of zero could be used to indicate a missing or null item value.

Another method is to insert separators or delimiters of different
kinds to mark off portions of the string of bytes, for example:

(ED)J(SWQ(0)SMITH(0)12500(ID)5711(ID)ENGNR(ID)5712(ID)TECH(AD) ...

t t t
1

i

11

i

J

Sub-items Item Group instance Group instance
(first and Value'

1

middle Assembly
initials)

where (ED) = entry delimiter
(SD) = sub-item delimiter
(ID) = item value delimiter
(AD) = assembly delimiter

The system can scan down the stream and find any particular part
of the data. Non-existent data is handled simply by leaving it
out; for exar.ple, if a title had not yet been assigned to skill 5712:

... (ID) 5711 (ID) ENGNR (ID) 5712 (ID) (AD) ...

If items or groups are often non-existent, it may be advantageous
to use a tag technique in which a recognizable specially encoded
item or group idt.' tification (name, label) is stored preceding
each value:

(11)JQSMITH(I2)12500(G1)(I3)5711(I4)ENGNR(G1)(I3)5712(G1)

t t t
Item Item Group Value
code code code non-existent

for 14

Now the system can scan down the string, identify each portion of
the data, and ascertain where data is missing by comparing the tags
with the stored data structure. For example, above, an 13 (job code)
is normally followed by an 14 (title), but in this instance was
followed by a G1 indicating that 14 was not present.

449
1457

www.manaraa.com

9-4

9.1.1 Item level storage

Item values are stored as binary configurations which are binary
or binary-coded-decimal for numeric item types; and according to
a code, usually ASCII (USA Standard Code for Information Inter-
Change) or EBCDIC (Extended Binary-coded Decimal Interchange Code)
for string item types.

Packed decimal numbers (two 4-bit digits per 8-bit byte) usually
have a sign, if present, in the four bits to the right of the
least significant numeric digit. Unpacked numbers (1 digit per
byte) typically carry the sign in the left-hand four bits of the
right-most byte (usually called zoned decimal).

In putting information in an area in storage larger than necessary
to contain it, numeric information is usually placed as far to the
right as possible ("right justified") and unused space on the left
is filled with zeroes; while string-type data is usually left-
ustified and right-filled with blanks. These conventions for
sign placement and justification will be assumed unless otherwise
stated. The information already presented under Data Structure
.(see 2.1.1, and Figures 2-3 and 2-4) will not be repeated.

GIS

Null values are represented by binary zeroes. Item values are not
aligned with 32-bit memory word boundaries.

MARK IV

Item value storage depends on s7stem environment.

NIPS/FFS

The entry and repeating group identifiers and the constituent
items of non-repeating groups must be alphanumeric; that is,
numeric items which have binary values are illegal in these places.

The length of a variable length item is stored in the first word
of the block of numeric items which are not members of non-
repeating groups. Coordinate type data is stored as two 32-bit
binary words (one is for latitude and one for longitude), each
with a 10-bit integer and a 22-bit fraction.

TDMS

Item values are stored in the form of a pair:

item - identifier, item -value

450
458

www.manaraa.com

9-5

If the value is non-existent, the whole pair is absent from the
data. If an item value is numeric and less than 7 digits, it
is converted to a 21-bit binary number. Otherwise it is stored
in the form of its actual input character string (including
decimal point), preceded by the number of characters in the value,
and the item-value in the identifier-value pair is a pointer to
that representation.

Items of type "date" are stored as a 21-bit number of days
since 1900-01-01.

UL/1

String and coded item values can be stored in either fixed or
variable length modes.

The determination of storage mode for each item is based upon
an analysis of the input data at the time the file is created.
If the item values are sufficiently constant in length across
the complete set of values in the initial instance of the file,
the fixed mode is selected. Otherwise the variable mode is
assigned. In the latter case, the length is contained in one
or two bytes (depending on the item schema) immediately preceding
the value. A value stored in fixed mode is right-filled with
spaces.

A "date" type item is stored as century and year (12 bits),
month (4 bits), and day (8 bits).

COBOL

Item storage is an implementation function. In a typical system,
2-, 4-, and 8-byte fixed; 4- and 8-byte floating point; and
ASCII or EBCDIC string values are provided (see 2.1.1).

The user may have the ability to specify that a code other than
the system standard is used in a given file, and to have it
automatically translated accordingly.

DBTG

Item storage will be defined by each implementor of the DBTG
proposal.

IDS

Item storage is according to COBOL usage.

451
459

www.manaraa.com

9-6

IMS

IMS treats all stored item values as byte strings.

SC-1

A binary integer value is filled on the left with sign bits.
An item of type "general" is preceded by its length, as a
one-byte binary integer. A null value for a numeric item is
represented by zeroes, and for a string item, by blanks, unless
the item has been specified to be optional or variable. In

that case, tiv:re will be no value for it in the file. Lengths
of variable length or optional items are stored in the entry
header.

9.1.2 Item storage in groups and entries

Unless otherwise stated, item values in a group or entry instance
are stored contiguously and in the order shown in the definition
of the constituents of the group or entry schema.

Systems generally do not make any special provision for the
storage of non-repeating groups. Such a group is stored as
the concatenation of its constituent item valw.s, and is, with
its constituent items, accessed in the same way as other items.

GIS

Item values are accessed via the Data Definition Table (DDT)
which is referenced by the compiler which translates function
requests.

MARK IV

Access to item values is through compiled instructions, based
on the File Definition.

NIPS/FFS

The set of values for the principal items in the entry (the "fixed
set"), and each instance of each repeating group ("periodic set"),
is individually stored in separate physical records, as is each
instance of a variable length non-repeating group ("variable set").

452
1460

www.manaraa.com

9-7

Each such record contains the following information, in the
order shown:

Record attributes (length and type).

Information to associate this set of item values with
the correct entry, and group within that entry

Entry identifier
Group name (see 2.2.3.1)
Group sequencer (see 2.2.3.2)

Number of words of binary data. (This includes the
length of the variable item, if present, and user-
supplied numeric items that are outside non-repeating
groups.)

Padding for word alignment, if necessary.

Number of characters in the variable field, if used.

User-supplied numeric items. (All numeric items not
contained in non-repeating groups are placed together
here with one item per binary word.)

User-supplied fixed length alphanumeric data. (This

includes alphanumeric items and groups, and numeric
groups. These data are stored in EBCDIC.)

User-supplied variable length itoa.

If this is the record for a "variable set" instance, the numeric
items and fixed length alphanumeric data are not present.

Accessing information to the above is carried in a File Format
Table (see 3.8 and 9.3).

TDMS

The item-identifier/item-value pairs comprising a group are
stored together as part of a body of data called CDATA. Access
to item values is through a chain of tables whose structure is
described in 9.3 which also describes CDATA.

UL/1

All item values subordinate to all the groups in an assembly are
stored together (not immediately following their parents, as in
other systems). Within such a collection all items from a given
item schema are stored, followed by all those from the next, and
so on (see 9.3).

458.
461

www.manaraa.com

9-8

COBOL

Item values in a group are not referenced in the data base as
such, but only after the group on entry has been moved from
secondary to primary storage. Values are then referenced
directly via operand addresses.

DBTG

Storage of item values in groups and entries is determined by
the implementor.

IDS

Item storage is according to COBOL usage.

IMS

IMS does not deal with individual items within groups, except
in their role as group identifiers.

SC-1

Item values are accessed by simultaneous use of tables derived
from the data definition, and such elements as the item value
lengths stored in the entry header.

9.2 Techniques in entry and file level storage

The logical data structure is formed by associating lower level
schemes to form higher level ones (see Chapter 2). In an
analogous way, item and group instances are collected to form
higher level groups, and the entry.

The overall form of the storage structure at this level arises
from four factors:

The characteristics of the physical storage medium
and its device.

The way in which the correspondences among logical
data elements are reflected in their storage.

The way in which logical elements (groups and entries)
on the one hand are related to physical records on
the other.

The operational environment (see Chapter 10).

454
1462

www.manaraa.com

9-9

9.2.1 Media and devices

Physical secondary storage devices may be sequential or direct
access. In either case, the data is generally stored in the
form of records, where a record is the portion of data which is
manipulated as a single unit or entity by the combination of
hardware and software. Some data base management systems make
a distinction between physical record, which is a hardware-
determined element, and logical record, which is a software
entity. In a sequential device, there is a one-dimensional
medium (usually magnetic tape), and to move from one place in
the file to another, it is necessary to traverse all the inter-
vening information. This establishes a natural corresponding
order for the records, which appear one after the other in a
sequence on the medium. There is generally no sort of individual
identification for the record other than that implied by its
relative position in the sequence of records; in other words,
there is no "record address".

A direct access storage device (for example, disc, drum, or
magnetic strip) is one in which it is possible to reach any
part of the data in approximately the same time. Each record
in the storage device has a hardware address related to its
position on the medium, and can be accessed directly, given
that address. In addition, the system may give each record
an identifier which also uniquely addresses it. In fact, several
layers of these may exist, with each in turn being converted
into a lower-level one by the data base system, the operating
system, or the hardware, until the final one is reached. In the
discussion in this chapter, "address" will be used to mean an
identifying element at any of these levels. When an address
is stored as an element of data in the system, it is often
called a pointer.

The records in direct access storage are not arranged physically
in sequence in the same way as the records on a sequential
medium, but such a sequence can be defined in terms of the
records on consecutive sectors, tracks and surfaces on a disc
or magnetic strip, or consecutive tracks on a drum; it than
takes on the characteristics of a sequential medium.

9.2.2 Storage structure organization

The two primary elements of the relationship between data
structure and storage structure are:

How the storage structure represents the relationships
among entries in a file, groups in a group relation,
items and assemblies in an entry, and groups in an
assembly.

455.
463

www.manaraa.com

9-10

How this representation is used in accessing
information. A given basic structure of the
stored data may be utilized in several different
ways for different requirements.

Often an entry (in the form of ttie collection of all its item
values) is stored as a single independent entity in the file, and
is accessed as a unit, after which its constituents are available
for processing. Alternatively, the group (rather than entry)
in,,tance may be the independently-stored element. In most cases,
the organization of the entries in a file centers around a set
of one or more item schemas taken in an order of significance,
which constitute the entry identifier or sequencer.

Accessing an element in the file may be done directly, by
furnishing an address or system-provided identifier, or by
locating it through its relationship to some other element.
In the latter case, the relationship may be that of being next
in a sequence of such elements, or it may be a more complex one.

These methods apply not only to the organization of elements in
a file, but also to lower levels, for instance the storage of a
group as the concatenation of its item values. These techniques
can also be applied in various combinations, to allow several
different accessing methods within the framework of a single
storage structure.

9.2.2.1 Direct storage structure organization

A storage structure using direct access to each element (that is,
location of the element by having its address immediately
available) can be organized in several ways. One way is to
store a new element (for example, group or entry) at any vacant
place in the file, saving the address of that location for
future use in retrieval. Here the address is in fact used
directly, without being related to the values of any items in
the stored element.

Accessing can, on the other hand, be based on such values, as
in randomizing or "hashing", in which a set of one or more item
values in the element is transformed into a record address.
This transformation is often based on manipulation of the
characters in the value(s). Since its random nature may result
in different values; transforming to the same address, provision
has to be made for overflow from that location into other
records. A somewhat related method depends on mathematical
calculation of a unique address from the given values.

A different technique is the use of various kinds and levels of
indexes, in which the system maintains a list relating values of
items to addresses of elements containing those values. This is
discu3sed later in more detail (see 9.2.3).

www.manaraa.com

9-11

9.2.2.2 Relational storage structure organization

This organization depends on the ability to move from one
element, which has been located, to another, related one.
The elements in a relation may be associated by being in a
sequence, or by provision of a more general structure, in
which a number of individual relations exist from one element
to others. The ordering of elements in a sequential structure
is often according to the value of one or more pieces of data
in them, such as a file of entries corresponding to employees,
in sequence by employee number.

A sequential structure may be of two forms:

Physical sequential, in which the elements follow
one after the other in a sequential store, which
may be a sequential device, like magnetic tape,
or may be a direct access device used - equentially.
An example is writing the groups in an assembly
on tape.

Logical sequential, in which the elements are
separated in the store (generally direct access),
and the sequence is established through other means.

In any sequential organization, the system must be able to tell
when it has reached the end of a sequence of related elements
(for example, the groups ir an assembly). This may be accom-
plished by storing the number of elements in the set (the "count
item" for an assembly), or by placing a special "end" symbol
in the last element.

One way of establishing a logical sequential organization for
a set of elements in a file is to have a physically sequential
list of their addresses immediately available, for example
in internal memory. To go through the structure sequentially,
the system moves down the list of addresses, using each in turn
to access the next element:

List in memory

2389
1417
3566
0592

Set of elements in file

1417

2339

457
465

www.manaraa.com

9-12

Another way to implement a logical sequence is to set :Lt up as
a chained organization, in which there is a way of locating the
first element of a collection, and each element contains the
address of a pointer to (that is, address of) the next.

Address of
first element
(in memory)

2389

Set of elements in file

1417 0592

2389

3566

0592

"end"

1417

Modifications to an element in a file which is on a physically
sequential store may require rewriting all or part of the whole
file. The logical sequential organization avoids this. If a
record needs to be added, it can be placed in any empty location
in the store, and the pointer list or chain modified accordingly:

Before

After 1 2

Instead of having a collection organized in a single, purely
sequential way, each element may have several different relations
to tsther sets of entities (see Figure 2-32). An organization of
this kind can be achieved either by placing in that element, for
each relation, a list of the addresses of the related elements,
or by establishing one chain from that element for each relation,
or by providing indexes which reflect the structure. Thus, a
file might have a number of independent chains or separate lists
running through the same set of entries, each representing dif-
ferent relations. For example, the entry for a "person" might
have one relation (list or chain) tying him to all his "projects",
another, to his "skills", and a third to his "children".

458
466

www.manaraa.com

9-13

This kind of facility can also be used to order a single file
in different ways, by having one chain connect the entries in
employee number order, and another, alphabetically by name.

A file schema of this sort consists of a number of different
groups, linked together in a complex way (see Figure 2-31).
Since, so to speak, any part of the file is accessible from any
other, processing of related information is accomplished by
moving through the file from one group to another, following
the relations. If the process is to begin with a specific
occurrence, then a direct access method must be used, or part
of the collection must be searched. In other cases, it may be
satisfactory to retrieve all the instances of a given schema,
in an arbitrary order.

9.2.3 Indexes

The use of indexes was mentioned earlier as a means of associating
a data value with the address of an element containing that value.
An index may consist of the sat of value-address pairs, or, more
compactly, of a value and the set of addresses associated with it.
In either case, the index is usually in sequence by value. If

the index is large, it may be broken up into several levels, with
the first one, in high-speed memory, giving for each range of
values the address in the file where a finer index to that range
is located; that one in turn may lead to another even finer one,
and so on.

An index may contain one value-address pair for every occurrence
of a given value, or it may represent only unique values, or
even only ranges of values. In that case, the address is a
pointer to a single element with that value, or in that range,
and the rest are located through a relational structure.

If the entries in a file are organized only sequentially by entry
identifier, finding the entry with a given identifier would
require searching the file from the beginning. This can be
avoided by providing an index which gives the file addresses for
certain identifiers occurring at intervals along the sequence.
An entry with a particular identifier is located by searching
the index for the largest value which is still less than that
identifier, accessing the corresponding entry, and then following
the sequential organization (which may be physical or logical)
until the desired entry is found. This is termed an indexed
sequential organization.

Even though entries in a file are easily accessible through
their identifiers (via direct or indexed sequential methods),
it may be desirable to locate an entry according to the values
of some item other than the one determining the basic file

el 5 9

1;67

www.manaraa.com

9--14

organization. In that case, to avoid the necessity of searching
all or most of the file, the system may set up secondary indexes
for values of other items. A file which is indexed by every
value of every item is sometimes called an inverted file. An
inverted file can be applied to find entries which satisfy a
combination of conditions. For example, if all "employee" entries
with SKILL=5711 and DEPT=2013 were needed, the address lists for
those two values in the index could be compared. Addresses
appearing on both are those of entries satisfying the condition.

9.2.4 Relation of records to logical elements

Data is stored in
are determined by
structure, on the
groups, and other

the form of records, whose characteristics
the system hardware and software. The data
other hand, is reflected in entries, assemblies,
logical elements.

The correspondence between records and logical elements varies.
In the simplest; each entry or each group of the storage structure
corresponds to exactly one record, and vice versa (see Figure 9-la).
Other possibilities are to store multiple or partial entries per
record (see Figure 9- lb,c).

a

b

c

IF record -->i

entry
I I

record

IF- record >I

entry

>I

entry entry entry J

K---- record K---- record-----M

entry

Figure 9-1
Relation of records and entries

It should be noted that systems may use one of these techniques for
groups, and a different one for entries. Also they may be used in
various combinations. Further, entries and records can be fixed or
variable length.

460
468

www.manaraa.com

9-15

Some systems assign a fixed set of elements to a record, but
allow them to be rearranged within the record to meet changing
requirements. In many systems (usually at the operating system
level), an element may be assigned to a record initially, but
may be subsequently moved to another record, with the original
one preserving a link to the new location.

Addition of a new entry to the file is accomplished either by
storing it directly (see 9.1.2.1), or putting it in a vacant
place (unusec' record or piece thereof) in the file, and adding
the address of that place to any appropriate lists, chains,
tables, etc.

Pointers in a storage structure are generally addresses of
records, but they may be used to relate both

records, for example, to chain them together to
accommodate a sequentially organized file of
entries, and

entries or groups. for generalized relational
structures (see 9.2.2.2).

In the latter case, if a record contains more than one entry
or group, the pointer is used to locate the record, which is
then searched for the desired element.

9.3 Entry and file level structure

Similar techniques can be used to relate the groups in an assembly,
assemblies in an entry, and entries in a file. These have been
discussed in the preceding section, and the current section
describes which are used in the surveyed systems.

A problem arises in mapping a hierarchical structure of data
(that is, a tree) into a sequentially organized storage. The
most common technique is to follow each element by the first
element at the next lower level if there is such an element,
and by the next element at the same level if there is no lower
level one. This results in a top-down organization.

Since storage of non-repeating groups is generally similar to
item storage, only repeating groups will be discussed here,
unless otherwise specified.

GIS

Each group from a given schema has a constant length; an assembly
consists of the concatenation of Lhe groups forming it, in order
by the values of the user-defined group sequencer (see 2.2.3.2).

461
469

www.manaraa.com

9-16

Each group which has one or more dependent group assemblies
contains a user-defined count item for each such assembly,
whose value is the number of members in the assembly. The
entry consists of the assemblies, in top-down order.

Each entry is stored as a logical record (padded out to fill
if necessary) in the OS/360 data management sense. Physical
records may be fixed or variable length, and may contain one or
more logical records (but always an integral number), as deter-
mined by the user (see 9.5).

The organization of entries in the fii4 is also chosen by the
user, and may be sequential or indexed sequential [using OS/360
access methods SAM (Sequential Access Method) and ISAM (Indexed
Sequential Access Method) respectively] with the identifier
item(s) of the root group (the entry defining group) serving as
the sequencing element. Storage is on tape or disc, with ISAM
being usable only on the latter, and requiring fixed langth
records. Variable length logical records are permitted with SAM.

MARK IV

Groups in an entry are stored in a top-down fashion, with an
integral number per physical record. If a repeating group
schema is defined to have a fixed assembly size, its superior
group does not have a count item. Fixed and variable size
assemblies may be nested in any order.

A variety of accessing methods are used, depending on user
requirements.

NIPS/FFS

The entry consists of a sequentially organized set of physical
records, all with the same basic internal structure. Thc. 'nntent

of each data record is either the set of values of the princip-1
items in the entry, an instance of a repeating group in the
entry, or an instance of a variable length non-repeating group.
The initial portion of each data record contains a value defining
its length, a code (to distinguish it from various kinds of
non-data records which are also part of the file), and the value
of the identifier for the entry to which it belongs.

The record further contains the number of the group schema
of which it is a part and the value of the group sequencer for
this instance. If the record contains the principal items, the
group schema number is zero. If no group sequencer is specified
by the user, the system supplies an internal one.

1,62.

47o

www.manaraa.com

9-17

The records in the file are in sequence by record type, entry
identifier, group schema number, and group sequencer, in that
order, so that the file consists of entries in identifier order;
the entries are made up of assemblies in group schema order;
and the assemblies are a contiguous set of group instance
physical records in sequencer order.

The file contains at the beginning a non-data format description
record for the overall structure of the entry, with the length
and other attributes of the set of principal items, and of each
repeating group. A format record also exists or each item and
non-repeating group schema, with accessing and other information
derived from the data definition.

Data files are stored as OS/360 Data Sets. They may be used as
sequential files from magnetic tape or as sequential (SAM) or
indexed sequential (ISAM) files from disc.

TDMS

Entry level structure in TDMS is represented by a sequence of
tables (see Figure 9-2) which operate in the following way, and
which define a totally inverted file.

CFIND contains one line for each repeating group instance in the
file. Each such instance has a permanent instance number which
is used in the system's indexing scheme, and which is the argument
for an intermediate table CUPDATE, which furnishes the offset
between the permanent instance number and the location of the
corresponding information in CFIND. The value found in CFIND is
the location of the instance in a group instance table CDATA;
this location may change from time to time. The use of CUPDATE
and CFIND as intermediate elements eliminates changSng the PINs
when instances are added, deleted, or moved.

As shown, the down pointer in CFIND in the line for the principal
items in the entry points to the line for the next entry; at
lower levels, to the next level up in the hierarchy ("down" here
means to the parent). The up pointer points to the next instance
at the same level (this may be the next instance of the same
group, of the first instance of the next group at the same level;
the system can tell which by the repeating group identifier).
A zero in the up pointer indicates the last instance at a given
level. The line for a lower level group follows directly in
CFIND the line for the parent group.

463
1471

www.manaraa.com

9-18

CDEFINA

Relates item number to name and points to

start of table of values for that item.

4 DEPT

7 SKILL

CVALUES

Contains one line for each value of each item 5711
5712

schema. Values are arranged in ascending order

Within schema. Points to list of groups 2000
2011 s

containing that value.

CENTS

For each value of each item, contains a list of 3*

4718
the permanent instance numbers (PINS) of the 5212

5835
groups containing that value. These serve as

* No. of PIN.
arguments for CUPDATE and CFIND. with DEPT -200'

For

CUPDATE

For range of PINs, contains the amount of

adjustment (+ or -) to be made to get the

correct entry point to CFIND.

I
5201-5218 +11

CPIND

Defines entry group structure.

Repeating group Parent or next Next group at Group instance
Identifier entry 1141114 level

Down Up (CDATA)
Pointer Pointer Pointer

5223 0
(to next entry)

1

2

2

CDATA

Contains group instances.

Item scheaa No. Value*

1 12374

2

3 27.0131

4 2011
OOS 411.0

7 5711

7 5712

a

*This may be a pointer to a string item value rather than the
value itself, as iu item schemes 2 and 0.

Figure 9-2
TDMS Storage Structure

472

www.manaraa.com

9-19

CDATA (and all other tables that make up the data base) are
stored as contiguous blocks (records) of fixed length (2160 bytes)
on random access storage. Directories within the file contain
the starting block number for each table type so that the various
pointers can be converted into an absolute file block number for
direct single access retrieval.

UL/1

The storage organization is according to these rules:

All items at one level in an entry are stored
preceding all items at the next level.

All item values for one multiple-valued item schema
are stored together.

All fixed length items are stored preceding all
variable length ones.

All items subordinate to any group in an assembly
are stored together, preceded by a set of count items,
one for each member of the higher level assembly.

The effect of these rules is best illustrated by an example.
The data structure is:

A Entry
B Item (variable length - V)
C Item (fixed length - F)
D Repeating group

Item (F)
G Item (F)
H Item (V)

E Repeating group
Item (V)
Repeating group

K Item (V)
L Item (F)

An instance of the entry might be

B

F G H Group l

assemblyF G H Group!
I

KL
KL

KL
KL
KL

I

KL

473

=1,R 5

www.manaraa.com

9-20

The stored data for that instance would be arranged as follows
(the data is stored as a continuous string; the gaps are for
clarity):

CvB 2 FFGGvHH 3 vIII 231 LIIILLvKKKKKK

1 2 i 4 5 6

Explanation

1 Root group. The fixed length item C is followed by an
index table, v, for the variable length item, and then
by the variable length item B itself.

2 This specifies that the values following represent a
two-member assembly of group D (items F, G, and H).

3 Level 1, group 1. All values from the fixed items F
and G precede all those for the variable item H.

4 This is another count value (similar to the preceding "2"),
which defines the next assembly of group E (single item I)
to have three members.

5 Level 1, group 2. There is no fixed length item in this group.

6 Each of these three count values is associated with the
corresponding one of the three values of I, and indicates
how many of the following L's and K's belong to that I.

7 Level 2, group 1.

Each variable length item consists of one or two bytes containing
the length, followed by the value. The index table, v, for variable
length items, precedes the set of variable length item values in
the assembly. It contains two bytes for each item in the set of
values which follows it; those two bytes give the relative position
of the start of that item (.hat is, of the length byte(s).

The entry, as stored, consists of system data (date stamp informa-
tion, for instance); a hierarchical directory; and the data itself,
stored as described above. The hierarchical directory gives for
each repeating group schema the relative starting position in the
stored data of its fixed and variable areas.

A physical record consists of an integral number of entries, each
of which starts with a four-byte value which indicates the length
of the entry.

474

www.manaraa.com

9-21

COBOL

The storage structure for COBOL data is dependent upon the
implementation. The following describes a typical case.

Groups in an assembly are stored contiguously, with the size
of the assembly being either fixed, or specified by the value
of a count item in the parent group or entry. (The name of
this count item is given in the data definition in the
"DEPENDING ON" item name phrase of the OCCURS clause.)
Storage of assemblies is top-down.

Each OCCURS clause,specifies a maximum number of members for
an assembly; the system allows space for this maximum amount
of data, except for the last group schema in the entry, when
only as much space as is needed is alloted. The result of this
technique is that each group begins at a fixed relative position
in the data stream, eliminating the requirement for excessive
computation of positions, or searching down the data. Each
entry is contained in a separate physical record. Organization
of a file is sequential or indexed sequential, based on the
entry identifier; or direct access, with the user having
responsibility for determining the address in the file where
an entry is to be stored, lnd for saving the addresses for
future use in retrieval of the entry.

DBTG

No storage structure implementation is specified, but certain
elements can be inferred.

Each entry is stored as a separate entity, with a unique
system-provided identifier called the data base key. The
user may specify the accessing method for the entry schema as

DIRECT, in which for each accec's a specified location
is loaded with the data base key (provided by the
system when the entry was first stored in the file).

CALC, in which an identifier is calculated from data
values in the entry.

VIA, in which the entry is accessed as a member of a
dependent assembly in a particular group relation.

475

1R7

www.manaraa.com

9-22

In the first two cases, the entry is accessed directly, using
the identifier as an "address", in the general sense described
previously. In the case of the group relation, the assembly
may be defined to be organized in either of two ways:

CHAINED, in which the parent group contains a pointer
to the first group in the assembly, each group of
which in turn has a pointer to the next, except the
last group, which points back to the parent. If the
OWNER option is specified, every group, not just the
last one, points to the parent. If the PRIOR option
is exercised, each group also points to the preceding
one, making the chain traceable in either direction
(with the PRIOR pointer from the parent leading to
the last group).

POINTER ARRAY, in which the parent group in the relation
contains or has associated with it a list of the addresses
of (pointers to) all the groups in the dependent assembly.
The PRIOR function can be achieved by moving to the
previous pointer in the array. The OWNER function is
moot, since the array is associated with the owner instance.
The pointers in the parent group may point to other pointer
arrays, which point to still others, and so on, until the
data is reached.

A variation is the

DYNAMIC POINTER ARRAY, which differs in that the instances
in the relation may be of any group schema in the system,
not just the one(s) declared as dependent; the array is
destroyed at the end of the run unit which created it,
and there are no pointers from the dependent instances
back to the parent.

The dynamic pointer array allows the host language programmer to
manipulate a temporary collection of data (such as transactions)
without regard for the defined data structure.

Although only a single group relation has been discussed, each
group schema may take part in any number of group relations as
parent or dependent, and therefore a group may have any number
of chain pointers or pointer arrays. Also pointers may be
associated with, rather than contained in, groups.

The relationship of logical elements to physical records
is an implementation function.

1.76

468

www.manaraa.com

9-23

IDS

The storage structures at the file level is based on group
relations with assemblies organized as chains. A group may
be stored directly, with a system-provided identifier, or
with one based on randomization of data values. The storage
is divided into pages, whose size is defined by the user at
file creation time, generally to be an integral number of
contigucius physical records.

Each page contains an integral number of groups (generally with
some space left over). Each group has associated with it a line
number, and one of the sections of the page header is a table
which relates line numbers to starting character positions of
the groups on the page. The combination of the page number and
line number is the unique group identifier used in chain pointers.
If one group needs to be expanded, other groups on that page may
be moved around to make available enough contiguous space for it;
values in the line number table then have to be changed to reflect
the new positions of the groups on the page.

When the direct access method is used, a number of group identi-
fiers may randomize to the same page number. A page header contains
a pointer to the start of a chain which runs through all groups
which randomize to that page. The groups themselves are stored
within the page if space is available, or in a nearby page.

IMS

Each stored file is called a physical data base. The storage
structure used for a physical data base depends on the accessing
method to be employed (which is specified by the user), and will
be described in that context. A pointer in IMS may be either
the address of a physical record in the file (similar to other
systems); or an item value which can be used to locate a record,
such as the identifier of an entry which has been stored using
a direct method (see 9.2.2.1). Also in the Direct Access methods,
the pointer not only selects the record, buL specifies a particular
starting character position.

Four access methods are available in the system:

HSAM (Hierarchical Sequential Access Method)

HISAM (Hierarchical Indexed Sequential Access Method)

HDAM (Hierarchical Direct Access Method)

HIDAM (Hierarchical Indexed Direct Access Method)

477

46,9,

www.manaraa.com

9-24

The storage structure characteristics associated with each of
them will be described in turn.

HSAM

This method is used with either sequential or direct
access devices. The storagA organization is physical
sequential, by entry identifier. Groups are concatenated
in storage to form an assembly, and assemblies in turn,
in a top-down fashion, to form an entry. Each group
contains a code to indicate its schema, and groups are
stored in the same order as that in which their schema
definitions were input.

Each physical record contains an integral number of
groups; it is fixed length and the unused area is
filled.out with zeroes. This organization uses the.
OS/360 access methods BSAM (Basic SAM) and QSAM
(Queued SAM).

HISAM

This method is used with direct access devices. The
storage organization is indexed sequential, by entry
identifier, but otherwise follows the HSAM methods.

An additional feature is provided by the secondary data
set group. The user may choose a group schema at the
level just below the root group, and have its instances
set up in an indexed sequential storage structure of its
own, separate from the root group structure. This
secondary structure is organized and indexed by the
concatenation of the root group and second level group
identifiers. This technique allows a second level group
to be accessed directly without going through the root
group instance and other dependents.

OS,360 ISAM (Indexed Sequential Access Method) is used,
supplemented by OSI6M (Overflow Sequential Access Method).

HDAM

This method is used with direct access devices and makes
use of OSAM. The root group of each entry is stored
according to a user-supplied randomizing method
(see 9.2.2.1) applied to the entry identifier. The
root group, and as many dependent groups as possible,
are stored in the directly accessed record; the
remaining groups in the entry are placed in records
(in an overflow area) which are cl-Ained to the root-
group one. Groups are stored in -rder of input rather

478

47.0

www.manaraa.com

9-25

than in a top-down hierarchical manner (made possible
by the internally stored schema identification). If

more entries randomize to a record than can be contained
therein, they also are stored in records chained to the
initial one. In order to reduce the length of such a
chain, it may be broken up into a number of shorter ones,
all originating in the initial record. In that case,
entry identifiers are randomized to a record address
and "anchor-point number", where the anchor-point number
designates which one of these shorter chains receives
the entry. In this case, each directly addressed record
has one chain for each such anchor point, resulting in
several short chains instead of one long one.

Secondary data set groups can be established for groups
at any level, not just second-level. Groups in an
entry are chained together; the user specifies whether
this is to be done in a top-down way (dependent groups
follow the parent; the last group in one assembly is
chained to the first group of the next higher level
assembly) or in a combination of top-down and left-to-right
(a group is chained both to the first of its dependent
groups and to the next group at the aame level). The
latter gives faster access in traversing the data, at
the expense of space for the additional pointers required.

HIDAM

This method is used with direct access devices. The
root groups are accessed via an indexed sequential
technique rather than directly. Other aspects are the
same as for HDAM.

SC-1

Storage of assemblies is in top-down form. The system maintains
tables which record the size of assemblies foraccessing purposes.

Each schema in the system has associated with it an ordinal number
representing its relative position in the set of elements depend-
ent on the next higher element in the hierarchy. Thus the data
base has number 1, the fifth file in the data base would have
number 5, and so on. A repeating group assembly and its schema or
prototype instance ("record") are considered to be separate elements
at adjacent levels. Each schema in the system is also given an item
class code (ICC) which is the ordered set of schema numbers starting
at the data base and proceeding down the hierarchical path until
that schema is reached. (An 'R' is used at each point a prototype
instance ("record") of a repeating group is encountered. The 'R'
stands for an instance number within the assembly.)

479

I1

www.manaraa.com

9-26

Thus in Figure 2-11, if "PERSON" represented the entry in the
personnel file, which was the fifth file in the data base, the
ICC for TITLE would be 1.5.R.4.R.2 (that is, data base 1, file 5,
group or item 4, item 2). If SKILL were a non-repeating group,
the ICC of TITLE would be 1.5.R.4.2.

Also, each instance in the data has an IPC, which is formed by
appending to the ICC a set of instance number values, one for each
R-value in the ICC. Thus in Figure 2-12, if this were the 496th
record in the file, "SALESMAN" would have the IPC 1.5.R.4.R.2.496.3
since "SALESMAN" is associated with the 3rd instance of "SKILL".

Physical records are fixed length (within one file), say two
to four thousand bytes, chosen by the user. Item instances
thus may cross record boundaries. Each physical record is
associated with the IPC of the first element it contains, and
its starting character position. The records are grouped into
volumes in the OS/360 sense, and the volumes into data groups,
both as specified by the user. The collection of data groups
forms the file. Introduction of the intermediate level of the
data group allows copying on only that portion, rather than the
whole file, when father-son updating is done.

The system maintains a directory for the IPC values in each
data group and volume, and each volume has a tree-structured
directory which relates IPCs to physical records.

9.4 Data base level storage structures

Among the surveyed systems, GIS, MARK IV, NIPS/FFS, UL/1, COBOL,
IMS, and SC-1 allow multiple file schemes to be considered as a
data base. Only in IMS is this association reflected in the
storage structure.

IMS

The storage structures described above (see 9.3) related primarily
to the "physical data bases" set up by the data administrator.
A user can also establish a "logical data base" consisting of
sub-sets and concatenations of the groups from the physical data
bases (see 2.2.2.1, 2.4.2.1, and 3.10). When the storage structure
of the physical data bases are defined, they must have provision
for all of the group relations needed to implement the logical
structures. Most of these provisions take the form of pointer
fields which set up logical connections between groups within the
same or different physical data bases. The result of these
linkages is a complexly organized network of physical data bases
forming a system data base; each user, however, sees his logical
data base as no more complicated than a tree.

480

472

www.manaraa.com

9-27

9.5 User control of storage structure

In many systems, the user is given some degree of control over
the storage structure at the file level, for instance, by being
able to specify whether the file is organized according to a
sequential or direct access method. The user may also be allowed
to indicate that different elements of data are likely to be
required at the same time, so that the system can arrange for them
to be "close" in the file. Another element of control is over
which items are to be the subject of secondary indexes, and how
those indexes are to be arranged.

GIS 11014

Following the definition of the root group in the file definition,
a statement of the form

PS[U]
DATM: DSORG= IS[U] , [keyword=parameter]

allows the user (e.g. data administrator) to specify to OS/360
Job and Data Management whether the file is to be organized in
a physical sequential (PS) or indexed sequential (IS) fashion;
and also that it contains data whose addresses are used as
pointers, and which are therefore unmovable (PSU or ISU). The
keyword - parameter pairs following permit the user to state
(among other things):

Average and maximum physical record length in bytes.

Entry length (fixed; or maximum if variable length)

Recording device, mode and density

Amount of space on the file medium to be assigned
to this file, and size of the increment to that
basic allotment

Whether the index for indexed sequential is to be
put in the main file area or kept separate

Whether physical records are fixed cc.- variable length

Whether a physical record contains one, or more than
one entry.

481

473

www.manaraa.com

9-28

MARK IV

The user may specify the file organization (sequential or indexed
sequential, with fixed or variable length records), and record
size and blocking. He may also specify that the file is to be
organized under any of the access methods supported by IBM's DL/I.

NIPS/FFS

Storage structure control is handled by statements in OS/360 Job
Control language.

TDMS, UL/1

None

COBOL

The statement

LEFT
SYNCHRONIZED RIGHT

allows the user to specify positioning of an item value within
an area in memory.

FILE-LIMIT IS address-1 THRU address-2

allows the user to designate a portion of a direct access device
to contain the file.

Storage organization is specified by

SEQUENTIAL
ACCESS MODE IS RANDOM

If RANDOM, then the user must also specify

ACTUAL KEY IS address-lo_;ation

DBTG

The DIRECT, CALC, and VIA options in the LOCATION MODE statement
specify. how the entries will be accessed (see 9.3). Further,
however, VIA also specifies that the entry will be .,laced as close
as possible to the logical insert point in the named group relation.

482

1_74

www.manaraa.com

9-29

In the definition of a group relation, the statement

SEARCH KEY IS item-name-1 [,item name-2] ...

will result in the establishment of an index, by the concatenation
of the item names, to all groups in each dependent assembly in the
relation. Organization of the assemblies in a group relation is
specified by

`CHAIN [LINKED TO PRIORI
MODE IS 1 POINTER ARRAY [DYNAMIC]

IDS

The user may define the IDS page size (in characters) and total
number of pages in the IDS file by

MD file-name; PAGE CONTAINS number-1 CHARACTERS:

FILE CONTAINS number-2 PAGES

If the user knows that a particular group relation is likely to
be used often, a statement

PLACE NEAR group-relation-name CHAIN

may be included in a group schema definition. The system will
then try to optimize the storage of the dependent group in the
relation, for example by placing the assembly on the same page
as the parent group, which allows retrieval of the assembly
without additional file accesses.

A statement

PAGE-RANGE IS number-1 TO number-2

can be used to limit storage of groups of a given schema to a
specified region within the total file. When the user wishes to
update the file, the operating system will allocate only the
specified region for updating. This subfile definition capability
allows concurrent update of the total file in a multiprogramming
environment.

The user may distribute groups of a given schema evenly over the
entire file by saying

INTERVAL IS number PAGES

which normally operates only during file creation, and causes the
sr,:-ified number of pages to be skipped between storage of
successive groups.

183

47b

www.manaraa.com

9-30

IMS

Stora3e structure control at the file level is defined by

DBD NAME = file-name, ACCESS = method

[,RMNAME = (randomizing - procedure -name

[,no.-of-anchor-points] [other-data])]

where "access" can be LOGICAL (specifying that a logical data base
is being defined) or the name of any of the four access methods
available with the system. "Other-data" limits the part of the
file to be randomized to, and governs the placement of data into
file areas.

DATASET statements in the definition control assignment of groups
to secondary data set groups, and record length and blocking
factor in the file.

A set of statements and options are provided to control the
establishment of the storage structure necessary to support the
formation of logical data bases from physical ones.

SC-1

User control of storage structure is done by a job called
Data Location Definition which allows the user to add additional
volumes to a data group, or to cre-te a new file, and specify
how the file is to be divided into data groups, and the data
groups into volumes. He may also create a new generation of only
one data group in the file. Another element of control is whether
the index to the file is written out with it. The user may specify
the number of bytes in a physical record by a BLOCKSIZE statement,
and the percentage of empty space to be left when the file is
created by a SLACK phrase.

In defining a "file" (that is, repeating group assembly) at any
level, the user may specify the inc..ement to be used in assigning
"r-values" to successive instances.

The user may, in connection with the definition of an item schema,
specify

INDEX
ALL
LIST value-list
RANGE range-statement

to cause production of an index of some or all values of that item.

4 6
484

www.manaraa.com

10. OPERATIONAL ENVIRONMENT

The operational limitations imposed by hardware and external software
not included as part of the data base management system are the prin-
cipal parts of the operational environment. The factors that together
describe this environment are highly interrelated, and require both
an analysis of the systems in their environment, and the related
operating system, communication, and other software.

Versions of the COBOL compiler have been implemented on many
different hardware systems. As a result, no single description of
one of its environmental interfaces would be representative. The
DBTG proposal has not yet been physically implemented. Thus neither
of these systems is included in the discussion in this chapter.

10.1 Hardware environment

Data base management systems may be designed to function on only one
computer system, or a family of computer systems, or even on completely
different computer systems. The hardware aspects of the operating
environment include restrictions, limitations, and flexibility as they
affect the user. Aspects of the environment under discussion include
the minimum central processor configuration on which the data base
management system can operate, internal core, direct access storage
devices, sequential storage units required by the data base management
system itself, and any limitations on the number of terminal devices
and direct access storage devices that can be accommodated by the
central processor and its associated operating system. Limitations
which these impose on the size of the user's data base are also con-
sidered part of the hardware environment. Many systems can operate
with additional hardware; i.e. more than that required in a minimum
system. The additional supported hardware is also an important part
of the environment.

10.1.1 Processor, main memory, and special requirements

The minimum hardware configuration, both central processor and core,
which is utilized to support the systems is show in Figure 10-1.
Sometimes it is found that the minimum configuration merely allows
space for the operating system of the particular machine plus the
particular data base management system without provision for buffers.

477
485

www.manaraa.com

10-2

Thus the minimum configuration is ncrmally given for operation of
only one function for one user against a single data file, with no
provision for concurrence of operations. The minimum memory for
on-line versions is generally greater than that for batch because
of the additional routines for special input/output devices, and
sometimes the additional buffers for multiple users.

SYSTEM PROCESSORS MINIMUM MEMORY REQUIRED
HARDWARE
OPTIONS

BATCH ON-LINE

GIS 1 IBM 360/40 128k bytes 256k byes decimal
arithmetic

MARK IV2 IBM 360/25 48k bytes n.a. decimal
arithmetic

NIPS/FFS IBM 360/40 128k bytes 256k bytes decimal
arithmetic

TDMS IBM 360/50 256k bytes 256k bytes real time clock,
drum storage,
fetch protect
feature.

UL/1 Spectra 70 256k bytes

64k words

n.a.

64k words

none

noneIDS H 615

IMS 1BM 360/40 or
370/145
IBM 360/50 or
370/l45

256k bytes

n.a.

n.a.

512k bytes

none

none

SC-1 IBM 360/50 256k bytes n.a. none

'Recommended configuration for MFT is model 40 with 196k bytes,
for MVT is model 50 with 512k bytes.

2
Subset systems of MARK IV require only 32k bytes.

Figure 10-1
Minimum CPU and core requirements

10.1.2 Data base storage media

Different systems require or support different types of magnetic tape
or direct access (e.g., disk, drum) devices for the storage of the
user's data base(s). In the systems studied, data bases arc stored
on magnetic tape or on direct access device according to some file
level st,rage structure (see Chapter 9). Provisions may be made for
incorporating additional devices beyond those required by the minimum
hardware configuration.

1486

478

www.manaraa.com

10-3

In order to allow backup (for restart or recovery from data base damage)
it is often necessary to store a log of transactions (see 8.2.3). The
storage needs for this, such as extra tape drives, are also given in
Figure 10-2.

Often part of the available storage is needed by the operating environ-
ment for its libraries. This may leave little or no room for storing
data. The second column of Figure 102 therefore deals with the
storage devices required to support the operating system alone, while
the third column shows the additional requirements for the data base
management system. The final column shows other secondary storage sup-
ported for data base storage.

10.1.3 Terminal equipment

Various types of terminal equipment are used with on-line systems, and
often a user can interface with the data management system from some
remote location by means of a communication link, or a small computer
can be used as a remote input/output device.

The terminal equipment that can be used by the various systems is
shown in Figure 10-3. The table excludes any terminal used as an
operator's console. The number of terminals that can be active at one
time usually depends on the type of communication link, and the type
and number of multiplexers selected to support the system. The location
and number of terminals are shown in the last three columns of the table.

10.2 Software environment

The software environment of a data base management system involves both
the operating system which is necessary for operation of the system,
and other basic software using or used by the data base management
system, such as procedural language compilers, report writers, and sort
routines.

The interface between the data base management system and the operating
system is normally explicitly defined, because a change in the environ-
ment of the system need not unnecessarily invalidate previous procedures
or data. Normally many facilities of the operating system are used by
the data base management system, but some are specifically excluded.

487

419

www.manaraa.com

10-4

SYSTEM

REQUIRED STORAGE DEVICES SUPPORTED MEDIA FOR

OPERATING
SYSTEM
ONLY

ADDITION FOR
MINIMUM DATA
BASE SYSTEM

DATA BASE

GIS 1 IBM 2314
disk volume

3 IBM 2311 disk
drives

any device supported
by OS/360 sequential
and indexed sequential
access methods

MARK IV 1 IBM 231' disk Any device supported
by OS/360 sequential
and indexed sequential
access methods

NIPS/FFS varies with

hardware
configure-
tion and
choices
made at
system
generation
time.

3 IBM 2311 disk magnetic tape or diski
data files (including
"File Format Table ") and

updating transaction
programs may be stored
as sequential files on
either tape or disk;
files to be queried or
updated from a terminal
must be disk files.

TDMS 1 IBM 2311
or 2314
disk drive
1 tape
drive

1 IBM 2302
or 2 IBM 2311
or 2 IBM 2314
disk drives

random access devices
only

UL/1 1 RCA 70/564
disk drive
3 tape
drives

1 RCA 70/564 or
590 disk drive RCA 70/564 and 590 "disk

drive

IDS 1 DSU 270
disk drive

none any device supported
by the GECOS III
operating system

IMS 1 IBM 2314
disk volume

1 IBM 2311 disk
drive
1 IBM 2400 tape
drive

any device supported
by OS/360;
the tape drive is needed
for logging transactions,
etc.

SC-1 1IBM 2314
disk volume

1 IBM 2314 or
2 IBM 2311 disk
drives

any device supported
by OS/360 sequential
and direct access
methods

Figure 10-2
Data base storage media

180
488

www.manaraa.com

10-5

SYSTEM TYPE OF TERMINAL NUMBER ACTIVE LOCAL REMOTE

GIS any terminal supported
by the "queued terminal
access method" (QTAM)
or "telecommunication
access method" (TCAM);
this includes IBM 2741
typewriter and IBM 2260
display

depends on the
"message control
program", which
specifies terminal
network

yes yes

MARK IV none n.a. n.a. n.a.

NIPS/FFS IBM 2260 display
IBM 2250 graphic
IBM 2265 display
IBM 2741 typeuTiter
IBM 1050 typewriter

unlimited, except
through terminal
processor storage
requirements

yes
yes
no
no
no

yes
no
yes
yes
_yes

ye
yes
yes

yes
yes

TDMS IBM 1052 typewriter
IBM 2741 typewriter
IBM 2260 display
Teletype model 33
and 35
CCl/30 display

10 (ten) total,
limited by
operating system

yes
yes
yes

yes
yes

UL/1 none n.a. n.a. n.a.

IDS typewriter devices:
Teletype models 33
35, and 37

Friden 7100
IBM 2741 typewriter
processor devices:
G115 processor
UNIVAC 1004
G225/235 processor

for one H 355,
either 192 type-
writer devices, or
16 wide band pro-
cessors, or 32
processors may be
connected; up to four
H355 devices may be
used

yes yes

IMS IBM 2740 typewriter
IBM 2740 mode] 2
typewriter
IBM 1030 typewriter
IBM 1050 all components
IBM 2260 display
IBM 2780 card reader/
printer

the total number
cannot exceed 255

no
no

no
no
yes

no

yes
yes

yes
yes
yes

yes

SC-1 none n.a. n.a. n.a.

Figure 10-3
Terminal equipment

481.
489

www.manaraa.com

10-6

10.2.1 Operating environment

One of the principal effects of the operating environment is found in
its method of scheduling a group of programs or run units. Any single
program may be in one of four states:

Running; i.e., being serviced by a CPU;
Blocked; i.e., unable to run because it is waiting for

some other action, such as a data base read, to be
completed before it can be rescheduled;

Waiting; i.e., ready to run, but in a queue until CPU or
other resources are available to it; it will enter
into execution when it has the highest priority of all
other waiting jobs. A special case of waiting is "entering",
where the program has not previously been in the running state.

The CPU or CPUs will therefore take a program and execute it for a
period of time which will then result in one of the following:

the execution of the program is completed;
the program is in a blocked state;
the amount of time ("quantum") that is allocated to
the job is exhausted, and it returns to the waiting
state.

Depending on the design of the operating system, there may therefore
be one or many programs co-resident in the machine, and these may run
concurrently or separately. They may also run for a fixed quantum of
time and be terminated for rescheduling, or be rescheduled only when
blocked.

The following working definitions are used:

A uniprogramming system is one in which a program is initiated, and the
scheduler component of the operating system does not start another program
until the first one is completed. In this case, the waiting state is
never reentered once the program has started.

A multiprogramming system allows all four states of a program to exist.
It can be implemented with different features:

Dismissal of a program when it is completed, blocked, or
has exhausted its time quantum;

With more than one program physically in the main memory,
or using "roll in/roll out" techniques.

A multiprocessing system is one where there is more than one processor.
Each processor may be working on different (or the same) programs
simultaneously. Each CPU of the multiprocessing system can aJopt the
characteristics of either a uniprogramning or multiprogrammirg system.

482
h90

www.manaraa.com

10-7

The elapsed tin,: of running a program in a data base management
system (i.e., the total time between initiating a program and
receiving a response, or completion) will depend on the operating
environment and the total number of users.

Those significant and relevant features of particular operating
systems used by the data base management systems are shown in
Figure 10-4.

OPERATING SYSTEM SIGNIFICANT FEATURES

ADEPT - 50 multiprogramming 10 simultaneous
jobs (4 tasks each), time-sliced,
roll in/roll out

DOS multiprogramming, 3 co-resident
jobs

GECOS III multiprocessing, roll in/roll
out, 16 co-resident tasks, time-
sliced

OS/360: MFT II

MVT

PCP

multiprogramming, 15 co-resident I

tasks
multiprogramming, 16 co-resident

tasks, roll in/roll out
uniprogramming

TDOS multiprogramming, 6 coresident
tasks

Figure 10-4
Operating system characteristics

There are two entirely different ways in which the integrity
of the data base may be threatened:

By two application programs within t' .e data base manage-
ment system both attempting to change the data base
at essentially the same time;

By some other program, external to the system, attempting
to change the data base.

Protection against the first of these is normally provided by
the data base management system (see 7.5.2.4 and 10.2.1.2).
Protection against the second is normally vested in the operating
system, and its fulfillment is shown in Figure 10-5 under the
heading "data base integrity.'

491

483

www.manaraa.com

10-8

If the operating system has a feature such as multiprogramming,
the data base management system may make use of this feature.
This can mean that the implementation of an additional feature
in the operating system affects the total handling of data.
As an example, handling interrupts and scheduling programs is
generally a function of such an operating system. A message
processing facility in the data base management system may
supplement this by subsequently scheduling its own programs.
The use of the operating system and/or special scheduling within
the data base management system is shown in the last column of
Figure 10-5.

SYSTEM OPERATING SYSTEMS DATA BASE INTEGRITY SCHEDULING

GIS OS/360 (MFT II, MVT) uses OS/360 to stop
non system access

uses OS/360 to stop
non system access

uses OS/360

uses OS/360MARK IV DOS or OS/360

NIPS/FFS OS/360 (PCP, MFT II,
I'NT)

uses OS/360 to stop
non system access

uses OS/360
augmented for
terminals

TDMS ADEPT-50 multiple users may
use, except for
UPDATE, where only
one use is permitted

uses ADEPT-50
multi quell:

time sharing

UL/1 TDOS uses TDOS uses TDOS

IDS , GECOS III uses GECOS III to
protect on concurrent
access to a common
file

uses GECOS III

IMS OS/360 (PCP, MFT II,
MVT)

uses OS/360 to stop
non system access,
also has 'HOLD'
feature

uses OS/360,
but IMS trans-
actions are
scheduled by
IMS schf.duler

SC-1 OS/360 (PCP, MFT II,
MVT)

lockout is at the
file level; if the
file is over several
reels/volumes, it is
at the volume level

uses OS/360

Figure 10-5
Operating system environment

484
492

www.manaraa.com

10-9

10.L.2 Concurrency of operations

There are three distinct functions that can be performed by a system
user: create, interrogate, and update. In a multiple user environ-
ment, where multiprograp-ing or multiprocessing techniques are used,
two or more users may be running programs which endeavor to perform
one or more of these functions ,2oncurrently on the same or different
portions of the data base. If the system is only one of several
programs running on the hardware, then the conflict may be extended
to several different systems trying to access the same dac,a base
concurrently.

If concurrent running of the same program is to be allowel, the program
is normally implemented in re-entrant code. Concurrent operations on
the data base may occur because:

the data base management system allows more than one
user to call simultaneously on the same or different
functions;

the operating system allows more than one user to
interact with the same copy of the data base
management system;

the operating system allows more than one copy of
the data base management system.

The ne(1 for several programs to share resources such as core or
secondary storage data base can cause conflicts which end in dead-
lock; thus if two programs both need more core before completing
and cannot give up any core until completed, they both wait for
the other to terminate, and consequently neither completes. A more
common deadlock in data base management systems occurs when two
or more users are waiting for each other to release portions of
the data base. The possibility that two co-resident programs conflict
or communicate with one another again allows contention (e.g., where
several users are concurrently modifying the same part of a data base),
which requires a guarantee that the integrity of the data base is not
violated; such conflicts therefore impose restrictions on the scheduling
and security of certain programs.

10.2.2.1 Concurrency during file creation

Of the three functions create, interrogate, and update, the creation
process must be completed prior to another operation on the same file,
whereas interrogation and update may be concurrent with themselves or
one another. The only questions on concurrency of creation are therefore:

whether two files can be created simultaneously;
whether the creation process on one file can be achieved

at the same time as other functions on another file.

The answers to these two questions are given in Figure 10-6.

485
93

www.manaraa.com

10-10

SYSTEM SIMULTANEOUS CREATION CREATION WITH ANOTHER FUNCTION

GIS by_using OS/360 by using OS/360

MARK IV by using OS/360 by using OS/360

NIPS/FFS yes, by updating null
files from terminals;
otherwise in batch using
OS/360

yes

TDMS yes yes

UL/1 no no

IDS by using GECOS III yes

IMS by using OS/360 by using OS/360

SC-1 by using OS/360 by using OS/360

Figure 10-6
Concurrency of the create function

10.2.2.2 Concurrency with single copy

When only one copy of the data base management system exists, there
are several ways that concurrent interrogation and/or update may

occur:

One application program called by two users, who
interact with different data fi1ts;

One application program, interacting with the same
data file, called concurrently by two users;

More then one application program interacting with
different data files;

More than one application program acting on the
same data files.

Some systems have means to achieve these, others either cannot operate
in this fashion, or do not protect files if the condition occurs.

Updating is often an exclusive operation so that no other activity
can take place while updating proceeds. A system, however, may
initiate functions such as remapping storage that are carried on
while updating is performed. In other cases, user initiated actions
such as interrogation or reporting can take place on the same file
while updating is in progress.

486
14914

www.manaraa.com

10-11

GIS

Only one program or user may apply any single function to a single
data file at any one time. The LIST statement may be used to print
reports during update runs.

MARK IV

File access is limited only by operating system rules. Any user can,
therefore, access a file being updated, even for independent updat-tng.
A single user may combine "transaction" updating, "Processing and
Record Selection" logic, and report writing using the "Output Content"
form.

NIPS

In batch processing one function can be performed on a file by one
application program at a time. When terminals are used, interrogations
and updating for the same or other files can take place concurrently,
except when the temporary file produced by updating (which contains
new entries or repeating groups or those with changed data values) is
being merged into the file.

Much of this concurrency is obtained because, even when using prestored
interrogations or updates, each user operates with his own copy of the
interrogation or update.

TDMS

Not applicable, since normal operation of the system involves multiple
copies.

UL /l

Only one programmer or user may apply a single function to a single data
file at any one time.

IDS

This system is not written in re-entrant code, and therefore concurrent
running of a single program is impossible. The system supports only
one data base (for each copy of the system), but a data base may be
split into subfiles. It is not possible to concurrently interrogate
and update, but on a subfile basis it is possible to apply concurrently
one function (for each subfile). Thus if there are n subfiles, it is
possible to provide either n interrogates, or n updates concurrently,
or any combination thereof.

487
495

www.manaraa.com

10-12

IMS

Any one application program can access or update only one file.
Simultaneous interrogation and update is allowed both for different
files, and also for the same file except when the HOLD feature (see
7.5.2.4) is used.

SC-1

Only different programs may access different data files concurrently.

10.2.2.3 Concurrency with multiple copies

When more than one copy of the data base management system is allowed
within the operating system, a further dimension of concurrency is
possible. The ability to limit data file access to one particular
copy of the system is usually vested in the operating system.

GIS

Multiple operations of any kind on different, files are available
through OS/360 multitasking.

MARK IV

Multiple operations of any kind on different files are available through
OS/360 multitasking. By having shared direct access storage, it is
possible for several users to interrogate the same file.

NIPS/FFS

Multiple operations of any kind, using shared data bases, are possible
using OS/360 (PCP).

TDMS

The normal operation of this system involves multiple copies of the
program. Multiple concurrent interrogation is allowed on the sane
file, but there is no concurrency of update; i.e. one update is run
on its own for any one data file. For multiple files, concurrency
sf updates and interrogations is possible.

UL/1

No concurrency is possible on the same file, but both interrogation
and/or update can be performeel concurrently on different data files.

IDS

It is possible to have concurrent updates and access on both the
same and different data files, except the restriction that there be
only one update per subfile still applies.

496

www.manaraa.com

10-13

IMS

Multiple operations are possible through use of OS/360.

Sc-'

Normal operation involves multiple copies of the program. Although
concurrent interrogation is allowed on the same file, there is no
concurrency of updates of one file. It is possible to have concurrent
update and access on both the same and different files, except that
only one update is possible for any one subfile.

10.2.3 Modes of system use

The data base management system may use, or operate, within its
environment in either batch or on-line mode. In the batch mode, the
user submits his job, with all necessary control statements and/or
inputs, and receives an answer or solution based on the inputs and
program involved. In an on-line mode the user may submit all his
data at the same time as he requests that the program be executed,
but he may also be allowed to give some data later, based on interim
results, or as an answer to a questior generated in the program.

On-line use may be restricted to the local area in the immediate
vicinity of the CPU or may be in a remote area, connected to a CPU
from some distance, often over leased or dial-up phone lines.

All systems can operate in a batch mode, which implies that the jobs
or application programs that are to be run by the system are held
in some queue until resources become available, and they are scheduled.
Two different types of batch mode operations can be distinguished.
Jobs are:

queued in a:first-in first-out mode;
sorted into some new order before running.

All systems studied have the former capability but none perform any
special sorting prior to execution.

On-line use means here that the execution of a program or job is
terminal oriented, and that single requests are executed (though the
operation may be multiprogramed or multiprocessed by the system). The
Local column in Figure 10-7 refers to the use of local terminals other
than the operator's console, for job submission.

497

489

www.manaraa.com

10-14

SYSTEM
ON LINE

LOCAL REMOTE

GIS yes yes

MARK IV no no

NIPS/FFS yes yes

TDMS yes yes

UL/1 no no

IDS yes yes

IMS yes yes

SC-1 no no

Figure 10-7
Modes of system use

10.2.4 Software facility interfaces

10.2.4.1 Operating system

Data base management system design is normally affected by the
previously specified operating system. Input/output control sub-
systems may be a part of the operating system, or else can be de-
veloped primarily for the data base management system. Because the
data base management system may run under different operating systems,
the method of accommodating various operating systems affects the
user.

A further aspect of the interaciton between the operating system and
the data base management system is in the method of identifying and
using the physical files. Functions usually performed within the
operating system, such as the provision of indexes or directories,
will affect the way that the data base management system is implemented
or performs. Similarly, the process of opening and closing files is
often performed by the operating system rather than the data base manage-
ment system.

498

www.manaraa.com

10-15

The basic input/output facilities of the operating system (often
referred to as access methods) are normally used by the data base
management systems; however, the access methods are often augmented
to provide better indexing for hierarchical or other more complicated
files. Space and resource management are normally controlled by
operating system functions. This iacludes allocation of buffers, and
opening and closing files. Figure 10-8 shows other operating systems
characteristics which may or may not be included.

SYSTEM ACCESS METHODS
TASK

SCHEDULER
LOADER
LINK

EDITOR

SPACE AND
RESOURCE
MANAGEMENT

COMMUNICATION
FACILITIES

GIS yes yes yes yes yes

MARK IV yes no no yes n.a.

NIPS/FFS yes yes yes yes augmented

TDMS yes yes yes yes yes

UL/1 yes no no
1

yes n.a.

IDS yes yes yes yes yes

IMS augmented yes yes yes augmented

SC/1 augmented yes yes
1

yes n.a.

1
Provides own buffering but uses O.S. open and close.

Figure 10-8
Use of operating system facilities

Additional features:

GIS

None

MARK IV

Report files which are sorted need the OS SORT/MERGE package in a
separate job step from interrogation. See also 10.2.4.3.

NIPS/FFS

Processing of source language statements requires the F level Assembler
and the MACLIB library that contains macros used to produce generated
code.

1499

491

www.manaraa.com

10-16

Generated programs are loaded using the services of the Linkage
Editor and require the use of the JOBMACRO library for the execution
of macros that Pre part of the generated code. The OS/360 Sort
program is also used for the execution of RASP sorts.

User supplied programs are of two types, those added to the Terminal
Processor at system generation time and those supplied as subroutines
to be executed under the control of the system. At the time the
Terminal Processor is generated so it will fit the installation's
particular terminal configuration, user problem programs, conversational
programs, and graphic programs for use from the terminals may be added.
Subroutines have a standard calling sequence so they may be written in
any 360 programming language but they should be constructed as a single
root segment, contain no I/O, and be available from a user's partitioned
data set library.

TDMS

The system is written in JOVIAL, and thus a JOVIAL compiler is required.
An interface is available, through JOVIAL, for programs to be constructed
that use the retrieval routines.

UL/1, IDS, IMS, SC-1

Ail use the operating system facilities for compiling programs for
user predefined procedures.

10.2.4.2 Communications subsystem

The interface betvcen user and the system may involve remote processing.
The design of this interface affects the user as he makes contact with
the data base management system, enters his program with the data, and
signs off. The interplay between the operating system and the: data
base management system in transaction management can significantly
affect the way in which a program is executed. In some systems, the
polling and queueing of messages is done by the operating system, and
in others the major scheduling of users is in the hands of the data
base management System, and priorities are given in an entirely dif-
ferent manner.

GIS

The processing from remote terminals is controlled by user written
message control programs of the OS/360 queued telecommunicaitons
access method (QTAM) or telecommunication: access method (TCAM). The
terminal user interface and the queueing aid priority of input are all
determined by the design of these message control programs.

MARK IV

None.

492
500

www.manaraa.com

10-17

NIPS/FFS

Terminal input and output operations are controlled by a Terminal
Processor Monitor. This monitor uses the OS/360 Graphic Access Method
(GAM) or the Basic Telecommunications Access Method (BTAM) for actual
transmissions to and from the terminals. The monitor maintains disk
input and output message queues for each terminal. queues are
scanned for the program requested, and if the program requested is
acceptable, the request is passed on to a Terminal Processor Supervisor.

The output queues can be displayed at graphic terminals by a program
that can serve all terminals concurrently. This part of the monitor
displays a screen of data under the direction of user requests. The
data in view may be moved backward or forware one screen load or one
line at a time. These move requests are serviced by the monitor with-
out entering them into queues or referring them to the Terminal Processor
Supervisor. The monitor can also call on a utility program to write
the contents of a message queue on the system output file, any specified
printer, or any stored data file.

The Terminal Processor Supervisor acts as the interface between programs
and the terminal input and output. The supervisor has two modes of
operation. At system generation time the supervisor's mode of operation
must be specified for each program that can be requested by a terminal
user. The terminal interrogation program, QUIP, illustrates one mode
of the supervisor's operation. When it is used in conjunction with an
MVT operating system or MFT operating system with the subtasking option,
it is executed by being ATTACHed to the supervisor as a subtask. All
terminal requests concurrently use that part of the supervisor that reads
input message queues a line at a time, and writes output message queues
and terminal messages. When the last QUIP output to a terminal has been
written in the output message queue, the QUIP subtask is detached from
the supervisor.

If QUIP is used with an MFT operating system that does not have the sub-
tasking option, QUIP is linked to the Terminal Processor Supervisor
and requests are processed serially. Concurrent processing of requests
can be achieved in such a system by using a separate copy of the Termi-
nal Processor Supervisor in each core partition.

The other mode of operation for the Terminal Processor Supervisor is
illustrated by the terminal update program SODA. The first request for
SODA causes the creation of a supervisor subtask. Subsequent requests
are chained onto this task in a last in first out manner. Regardless
of the number of terminals operating on a file, a single "hold file"
of updated records is used. When a terminal user indicates the file
is to be updated from its "hold file," the terminal is "signed off."
When all terminals have been signed off from SODA its subtask is de-
tached from the supervisor.

493
501

www.manaraa.com

10-18

`IDMS

ADEPT-50 permits operation of any filed program by a user specifying
the program name. All TDMS operations are filed by name as programs
within ADEPT-50. All terminal communications are handled by ADEPT-50
which manages the input/output for TDMS. The language of TDMS is
essentially free form with most specifications having a command form.
Each command begins with a command word (on a few occasions implied)
and is followed by command objects and modifiers where applicable.
Most commands are designed so that the order in which they are
entered is not important.

Although provisions have been made in some operations to accept pre-
stored trall3actior statements, most of the input is expected to be
via interactive console.

The carriage return symbol is used as the terminator of a command.
The asterisk is available when the user wants to continue a command
beyond one line. The question mark is available to the user at any
time to find out what kind of information can be legally used at the
spot where it was input.

Each command is error checked at the time it is entered and any errors
det ected at that time are immediately displayed to the user for correc-
tion before the command is accepted.

UL/1

None.

IDS

This is programmed by the user.

IMS

IMS uses prestored transactions. The format of input is: a transaction
code, optional password, and optional data.

Three types of processing are allowed: "Message" is for messages re-
ceived from remote terminals. "Batch-message" is batch oriented pro-
cessing with references to on-line files. Batch-message processing
may indirectly communicate with remote terminals. "Batch" processing
is strictly batch oriented and may communicate with neither on-line
files nor remote terminals.

494
502

www.manaraa.com

10-19

All message and batch-message programs are defined to IMS and identified
as to type at IMS system generation time. The programs are identified
to the system by PSBNAME (program specification block) and have as
associated transaction cone or codes. The transaction codes are the
means by which the user identifies, to IMS, the program he wishes to
execute. The PSBNAME and hence the transaction code are tied to the
processing programs through a PSB generation. The PSB generation also
describes the files the program may access, and the type of processing
that may be done against those files.

All messages received from remote terminals are stored in an IMS input
message queue. Transaction codes associated with message processing
programs cause the associated program to be scheduled for execution
under the control of the IMS nucleus as soon as adequate core is
available. To this end a fixed amount of message processing core is
allocated to the IMS system when the IMS system is started. The
scheduling of a job in IMS depends on three factors:

its priority number;
the "limit number" of other jobs in the queue which have
the same category of priority;

the "limiting priority".

If the job has the highest priority, it is run next, except when the
latest addition exceeds the limiting number of jobs at the given
priority. If the addition of the new job will exceed the limit, then
the priority is automatically switched to the limiting priority (which
normally is larger) and hence the job will be scheduled earlier (possibly
next).

Messages with transaction codes associated with a batch-message program
do not cause the corresponding program to be executed but remain in the
queue until the operator submits the program as a normal job in the
batch stream. The program then interrogates the IMS message queue for
the messages which contain its input.

Messages from processing progams, whether message or ',atch-message
are placed in an output message queue. When the line is available the
message is then sent to the terminal.

Batch programs are scheduled as batch jobs in the normal stream. These
programs have the full range of data base capabilities, but can access
neither the input nor the output message queues and run totally indepen
dently of the IMS nucleus.

"Command messages" allow the user to communicate with other users and
display statistical parameters. The master terminal operator must
enable the terminal. The user may "hold" a terminal until his output is
returned.

SC-1

None. 495
503

www.manaraa.com

10-20

10.2.4.3 Other software

Software facilities other than those normally thought of as part of the
operating system, may be used by the data base managment system. Typically,
the sort/merge package may be used by the extraction facilities of a self
contained system to publish a sorted list (see 4.6.4). Sorting may be
achieved dilactly within tha host language capabilities (see 7.5.3.4).
Normally, the compiler used in host language systems, and for own-code
routines in self contained systems, is also part of the operating
environment.

SYSTEM SORT/MERGE COMPILER

GIS yes no

MARK IV yes yes

NIPS/FFS yes, for batch interrogation.
no otherwise

yes

TDMS no yes

UL/1 no no

IDS yes, except for sorting "chains" yes

IMS yes yes

SC-1 yes yes

Figure 10-9
Use of other software facilities

10.2.5 Procedure preparation, modification, and submission

Within a data base management system, features are normally provided
to aid in application program or procedure preparation. Such features
include the ability to:

f..1.mulate procedures, requests, or programs for
future procLssing;

modify such procedures by a text editing capability;
catalog such procedures within the system for future
recall, modification, or submission.

This set of facilities applies to both batch and on line environments,
and may be available for the range of users from application programmers
to the parametric user. The level of interaction of these facilities
may vary from minimum commands to a tutorial capability.

496
504

www.manaraa.com

10-21

GIS

Utility task specifications are used to store, maintain, and retrieve
users' input line sets, which consist of user statements of up to 120
characters per line, with continuaticn to other lines. Any set of
input lines may be stored by using the format:

SAVE input-line-set-name

followed by:

END

The saved input line set may subsequently be invoked by:

CALL input-line-set-name

The input line set may be listed by the specification:

LIST TS input-line-set-name

and it may be edited by the utility task specification:

CORRECT input-line-set-name
AT line-number DELETE n ADD m
(m new lines)
AT line-number ...
END

The effect of an AT statement is to replace n lines starting at the
specified line number, with the m new lines.

The name of the input line set may be changed by:

CHANGE old-name TO new-name

and an input line set may be deleted by:

DELETE input-line-set-name

A utility task is also provided for saving users' procedural task
specifications in compiled and executable form. This utility is
invoked with the statement:

SAVEX saved-procedure-name

followed by the procedure to be saved. The saved procedure may be
subsequently invoked with the statement:

RUN saved-Procedure-name

505

4 97

www.manaraa.com

10-22

MARK IV

Data submission, including cards describing interrogation logic and
report specifications, is governed by OS or D08/360 Job Control
Langual-e conventions.

NIPS

Update-programs may be prefixed to the data files to which they apply.
All other cataloging of procedures (JCL statements) and programs are
handled by OS/360.

TDMS

The COMPOSE operation includes facilities to construct report descrip-
tions, and the MAINTAIN operation includes similar facilities to build
maintenance task descriptions. Both of these contain a set of commands
for editing (REVIEW, CHANGE and DELETE) and commands which make it
possible for the TDMS programs to have the ADEPT-50 operating system
catalog and retain the descriptions is separate files (SAVE and RETRIEVE).

UL /l

The preparation of programs is a purely batch operation, with no text
editing capability. The cataloging is entirely within the system, and
only computational procedures may be stored (see 4.5).

IDS

Cataloging, text editing, and on-line formulation aids are possible
within the operating system.

IMS. SC-1

All procedure cataloging is achieved by OS/360 JCL commands. There is
no capability provided, within the system itself, to aid in the formu-
lation and editing of the programs.

10.3 Modes of the operation by data base management functions

The mode of operation describes the various operational methods available
to the user for accomplishing his data processing task. It may constrain
the user in the way that data and procedures can be entered and infor-
mation retrieved. Possible modes of operation are: batch, interactive,
and transaction.

498
506

www.manaraa.com

10-23

10.3.1 Batch mode

Batch mode implies that the programs are entered as a contiguous
collection, normally called a batch, and that the entire batch will be
processed without user or operator interaction. Often these batched pro-
grams have some commonality; e.g., they may input different sets of data
for a common process. This, however, is not required, and the program
may be either prestored, or compiled then run as part of the batch
stream. Batch mode may include the use of presorted programs. Batch
mode usually implies batch output and may include controls for validation
of a group of programs.

10.3.2 Interactive mode

The interactive modes usually imply processing in the order of arrival
or according to a priority scheme based on arrival time. Within the
interactive mode there are several recognizably different kinds of
interaction. Within each of these, the kind of data and the number of
files used depends on system implementation. Also the use of these
interactive modes for data management system functions such data
definition, creation, interrogation or updating is a matter et system
implementation. A system may supply a type of interactive processing
for some or all such functions.

The first type of interactive processing will be called "conversational"

mode. It is found in systems that lead the user through the steps of

a terminal session, or upon request tell the user what alternatives he

has at a specific point in a terminal session. Conversational mode

may be provided to specify 0. particular application (i.e. write a

program) for a system function, OT for executing one that was pre-

stored in a manner that gives the system access to it.

The second type of interactive processing will be called "prestored"

mode. It occurs when the terminal user is all.,?wed to examine data

and prestored procedures and to specify execution procedures, data and/or

parameters that differ from those that were prestored. Prestored

mode differs from conversational mode in that the system does not

actively assist the user. The user must know what he can do and how

to do it. Prestored mode may be used to specify prccedures or to
execute prestored procedures, with or without execution time overrides

of parts of the prestored procedures.

10.3.3 Transaction mu,le

The interactive modes presuppose that the user will have some control

over the way that a program is executed. Transaction mode implies that

a particular transaction identifier with its input data causes the

execution of one or more predefined transaction programs. Theme

programs were predefined within the language(s) supported by the system.

Normally, each transaction is processed separately, with no reference

to the previous or next .. ransaction. Several files can be referenced

by the same or different transactions. Transaction mode often implies

automatic or semiautomatic data entry, with exception reporting and

local validation.

507

499

www.manaraa.com

10-24

SYSTEM
SPECIFY EXECUTE PRESTORED

CREATE INTERROGATE UPDATE CREATE INTERROGATE UPDATE

GIS B B or P B or P B or P B or P B or P

MARK IV B B B B B B

NIPS/FFS B B or P B B B or T B or T

TDMS C C or P C or P B or C C or P B or C or
P

UL/1 B B B no B B

IDS B or C
or P

B or C
or P or
T

B or C
or P or
T

B or C
or P

B or C
or P
or T

B or C

or P or T

IMS B or C B or C B or C no B or C
or P or
T

B or C
or P or T

SC-1 B B B B or T B or T B or T

Table Notation: B = Batch
C = Conversational
P = Prestored
T = Transaction

Figure 10-10
Functions permitted in various modes.

GIS

Task specifications are of three types: data description, procedural,

and utility. Data description tasks are used to define the data
structure of the user's data base and the input files.

Procedural tasks are used to specify the functions of file creation,
maintenance, and interrogation. Task types include: QUERY tasks in
which data from up to 16 files may be extracted for presentation in
printed reports or for recording in temporary files; MODIFY tasks in
which one or more "master" files may be updated from one or more
"source" files; UPDATE tasks in which a single master file is updated
from a single source file, and CREATE tasks in which a new file is
created from a single source file.

500
508

www.manaraa.com

10-25

A utility task is provided for building and modifying the system
security table, which controls access to files and items within files.

The RUN subprocedure may be used to invoke both saved GIS subprocedures
and arbitrary user programs. Data may be passed to and from the user's
programs through one or more hold files, provided such programs observe
the storage structure for these files.

MARK IV

Definitions and re.port extraction/format specifications may be saved
and invoked through OS-DOS/360 Job Control Language and system Run
Control and Cataloged Request cards.

TDMS

All time consuming transactions are normally processed in background
batch.

UL/1

One UL/1 master file or a coordinated set of up to four COBOL files is
used for sequential searches in batch mode.

IMS

There is no limitation on the class of data processing function in
any mode.

The definition of data structure to the program is performed as an
assembly run in either the COBOL data division, or as a PL/1 statement.
The definition of the data structure is an off-line operation utilizing
the O.S. assembler and lihkage editor. Creation of the file requires
allocation of space (using JCL) and populating it later. There is no
need for data base definition generation before this allocation. Thus
there is independent file creation, data base definition and population.

SC-1

A job definition language is used to create all JCL statements for
the user's program to head the data definition and input cards, as
well as maintain the job queue file directory with subsumed records
that list the steps of a specific user's job, and contains copies of
all bindlists for the job.

501
509

www.manaraa.com

10-26

10.4 System transferability

There are four aspects of transferability that apply to data base
management systems. They deal with the extent to which:

the system can be transferred between computers of the
same family operating under the same and different
versions of the operating system, or even an entirely
different operating system;

the system can be transferred to operate on computers
that are not in the same family;

the user must modify his procedures when transferring
to different computers of the same or different computer
families;

the user must transfer his data base from one type of
storage device to another, either on the same or
different computers or translate his data from one
representation to another.

GIS

The system may be used with any version of)S/360 above the previously
stated minimums.

MARK IV

Within the IBM 360 family, the system can operate on the Model 25 and
up. JCL changes are, of course, necessary between OS and DOS. DOS/360
does not support variable length ISAM records.

NIPS/FFS

It was initially hoped that the system could achieve hardware indepen-
dence by being Coded in COBOL. The present proportion of COBOL code is
so low that the system is operational only with any version of OS/360
on System 360 configurations from Model 40 up.

TDMS

Although the design was intended to be transferable to any hardware system
capable of supporting time-sharing, the initial implementation emphasized
efficiency for 32 bit word machine.

During design, consideration was given to the possibility of running
under various operating systems. To facilitate such transfer, all
control operations dealing with program overlays, and all I/O operations
have been centralized within TDMS. A major share of the effort in
transferring to another operating system would be in rewriting these
procedures without affecting the bulk of the JOVIAL code.

502
510

www.manaraa.com

10-27

UL/1

This operates on models 45, and 60 of the Spectra 70, and on the

RCA 2 and 6. It will also operate on the model 46 of the spectra 70

and on the RCA 3 and 7, but not in time-sharing mode.

IDS

Different .systems are operational on GE 130, 200, 400 and 600 hardware.

They are written in assembly language.

IMS

This system is transferable upward through the 360 and 370 line; it is

written in assembler language.

SC-1

The system is designed and implemented to be hardware independent, but

the prototype is coded for the IBM 360/50 computer and up, i.e. the

functional design is hardware independent. The present version is

operating on an IBM 360/65; future plans call for implementations for

other computers and application environments.

The same version of SC-1 operates under MFT-II and MVT, but a slightly

different version is required for PCP.

5:03
511

www.manaraa.com

APPENDIX - INDEX

Access code, 3.2

" lock, 2.1

" (of storage structure), 9.2.2
" statements, 7.5.2.2, 7.5.2.3

Add (data), 7.5.3.1
Addresses (in storage media), 9.2.1
Administration functions, 1.8.8, 8.0
Allocation (of space), 6.3
Assembly (data structure), 2.2
Attribute,entry, 2.4.3

2.5.3
,group, 2.2.3
,group relation, 2.3.3
,item instance, 4.7.2
,item schema, 2.1.2, 4.7.1
,item value class, 4.7.3
,schema, 2.0

,value class, 2.1.2.2
Audit trail, 8.2.4
Auxiliary data definition, 3.10, 7.6.3
Batch mode (of operation), 10.3.1
Bibliography, 1.8
Binding,compile time, 1.5.4, 3.8

,execution time, 1.5.4, 3.8
Chained storage structure, 9.2.2.2
Change (data), 7.5.3.2
Close (portion of data base), 7.5.1.2
Command, see statement
Communications subsystem, 10.2.4.2
Composition,data base, 2.6.1

,entry, 2.4.2
,file, 2.5.2
,group, 2.2.2
,group relation, 2.3.2

Compound conditions, 4.3.2
group, 2.2

Concurrency of operations, 10.2.2
Conditional expressions, 4.3, 7.5.1.3
Control statements (for programming user), 7.5.1
Conversational mode (of operation), 10.3.2

504
513

www.manaraa.com

A-2

Counting,cross entry, 4.10.2
Count item, 3.3
Creation, 1.8.6, 6.0

" action cycle, 6.1

Data administration functions, 1.8.8, 8.0
" base, 2.6
" " composition, 2.6.1
" " instance, 2.6.1
" " schema, 2.6.1
" " schema definition, 3.7
" definition, 1.8.3, 3.0

,auxiliary, 3.10, 7.6.3
context, 3.1
facilities, 6.0
(for creation), 6.2
form, 3.1

n interrogation, 4.12
H

processing, 3.8
n n

revision, 3.9
H

schema, 3.0
n

storage, 3.8
n structure, 3.1
" extraction, 4.6

(at the entry level), 4.9

(at the file level), 4.10
n "

at the group level), 4.8
If It

(at the item level), 4.7
" independence, 1.5.4
" integrity, 7.4.5
" manipulation language statements, 7.5

" mapping, 5.3.2
" modification statements, 7.5-3
" retrieval, 5.3.4
" retrieval statements, 7.5.2
" security, 3.2, 7.4.5, 8.2.1
" selection criteria, 4.0, 5.3.4, 7.4.4
" structure, 1.6.2, 1.7.1, 1.8.2, a.0

class, 1.2, 2.0, 2.7
definition, 1.8.3, 3.0

Decoded value, 4.7.3
Delete command, 7.5.3.3
Delimiters, 9.1
Dependent group, 2.3
Derived data, 4.7.4, 4.8.1, 4.9.1, 4.10.1, 6.5.2
Direct access storage devices, 9.2.1
Direct storage structure, 9.2.2.1
Editing, 3.2, 4.11.1

" transaction, 5.3.7
Element, 2.0
Entity, 2.1, 2.4, 2.5

www.manaraa.com

A-3

Entry, 24
" attribute, 2.4.3

" composition, 2.4.2

-defining group, 2.4, 3.5

" ,group, 2.4

" identifier, 3.5

" instance, 2.4.2.2

" name, 2.4.3.1

,plex, 2.4

" schema, 2.4.2.1
11 It definition, 3.5

" storage, 9.2, 9.3

" ,tree, 2.4

" type, 2.4.1

Error handling (by programming user), 7.4.3

Existence conditions, 4.3.1.7

Extraction, 4.6
,entry, 4.9

,file, 4.10

,group, 4.8

,item, 4.7

File, 2.5, 5.0

" attribute, 2,5.3

" composition, 2.5.2

" data, 5.0

" definition (for creation), 6.2
n (for update), 5.0

" instance, 2.5.2.2

" ,inverted, 9.2.3

" ,linked, 2.5

" ,mechanized, 4.13

" name, 2.5.3.1

" schema, 2.5.2.1

" " definition, 3.6

" storage, 9.2, 9.3
It II ,maintenance of, 5.4.2

" structure, 2.5

" type, 2.5.1
" ,unlinked, 2.5

Group, 2.2

" attribute, 2.2.3

" composition, 2.2.2

" ,compound, 2.2

" ,dependent, 2.3

" entry, 2.4

Group, entry-defining, 2.4, 3.5

" identifier, 2.2

instance, 2.2.2.2

name, 2.2.3.1

,non-repeating, 2.2
tt ,parent, 2.3

508
515

www.manaraa.com

A-4

Group, principal, 2.2

" relation, 2.3
It attribute, 2.3.3
11 11 composition, 2.3.2
ft tl instance, 2.3.2.2
11 n

name, 2.3.3.1
n n schema, 2.3.2.1
11 It

" definition, 3.4
n type, 2.3.1
" ,repeating, 2.2
" schema, 2.2.2.1
It It

definition, 3.3
,simple, 2.2

" storage, 9.2, 9.3
" type, 2.2.1

Hardware envirinment, 10.1
independence, 10.4

Hashing, 9.2.2.1
Hold (data for programing user), 7.5.2.4
Host language capability, 1.5.1, 1.7.2

11

system, 1.5.1, 1.7.2, 1.1.2
Identifier, 2.2, 3.2

,entry, 3.5
,group, 2.2

It
,system, 2.2.3.3

Indexing (of stored data), 9.2.3
Index sequential storage structure, 9.2.3
Input mode, 7.2.1

source file, 6.1, 6.2, 6.4
Instance, 2.0

It
composition, 2.2.2.2, 2.3.2.2, 2.4.2.2, 2.5.2.2

tl

,data base, 2.6.1
,entry, 2.4.2.2
,file, 2.5.2.2

It
,group, 2.2.2.2
,group relation, 2.3.2.2
,schema, 2.4.2.2

Integrity (of data), 7.4.5

(of system), 5.4.4
Interactive mode (of operation), 10.3.2
Inter-entry, 2.5

Interfaces,programmer, 7.3, 7.6.1
11 ,software, 10.2.4

Interrogation, 1.8.4, 4.0
Inverted file, 9.2.3
Item, 2.1
Item attribute, maintenance of, 5.4.1

" ,count, 3.5
tl

identifier, 2.1.2.1
" instance, 2.1.3
" instance attribute, 4.7.2
" ,multiple-valued, 2.1.3

507
516

www.manaraa.com

A-5

Item name, 2.1.2.1
" number, 3.2

,numeric, 2.1.1.1
,principal, 2.2

" schema, 2.1.2
attribute, 2.1.2, 4.7.1

" " definition, 3.2
" storage, 9.1.1, 9.1.2
" ,string, 2.1.1.2

type, 2.1.1
" value class attribute, 4.7.3

Language type, 1.4
Level number, 3.3
Linked file, 2.5
Locate (data), 7.5.2.1
Locate & access (data), 7.5.2.2
Lock, access, 2.1

,privacy, 3.2, 8.2.1
Logging (of modifications to the data base), 3.2.2

(of transactions), 8.2.3
If records, 9.2.1

Logical connectors, 4.3.2.1
Mapping, data, 5.3.2
Mechanized file, 4.13
Modes of operation, 10.3
Modes of processing (data), 7.2
Modes of system use, 10.2.3
Modification statements (for programming user), 7.5.3
Monitor (during creation process), 6.1, 6.6
Multiple-valued item, 2.1.3
Multiprocessing, 10.2.1
Multiprogramming, 10.2.1
Name,entry, 2.4.3.1

" ,file, 2.5.3.1
,group, 2.2.3.1
,group relation, 2.3.3.1

Network structures, 1.6.3
Non-procedural capabilities, 1.5.2, 4.1.2
Non-programming user, 1.5.6, 1.6.4, 7.1
Non-repeating group, 2.2, 9.1.2
Open (portion of data base), 7.5.1.1
Operational environment, 1.8.10, 10.0
Operating system, 10.2.4.1
Ordering (of transactions and data files), 5.4.3
Output mode, 7.2.1
Parent group, 2.3
Pass keys, 8.2.1
Passwords, 8.2.1
Philosophy, underlying, 1.7.1
Physical records, 9.2.1
Plex entry, 2.4
Pointers (re: storage structure), 9.2.2.1

508
517

www.manaraa.com

A-6

Population (of a file), 6.5

Premis action mix, 4.1
Prestolad transactions, 5.0

Principal group, 2.2, 3.5
item, 2.2

Privacy lock, 3.2, 8.2.1
Proceduial capabilities, 1.5.1, 4.1.1
Procedure modifications, 10.2.5

ft
preparation, 10.2.5
submission, 10.2.5

Processor, 10.1.1
Programmer interface, 7.3, 7.6.1
Programming facilities, 1.8.7, 7.0

11

user, 1.5.6, 1.8.7, 7.0
Randomizing, 9.2.2.1
Random mode (of processing), 7.2.2
Records,logical, 9.2.1

,physical, 9.2.1
Reference quantity, 4.3.1.4
Relational conditions, 4.3.1.2, 4.3.1.4

operators, 4.3.1.1, 4.3.1.3, 4.3.1.6
storage structure, 9.2.2.2

Reorder (data) statements, 7.5.3.4
Reorganization (of data) statements, 7.5.3.5
Repeating group, 2.2
Report format facilities, 4.11
Restart, 10.1.2
Retrieval statements, 7.5.2
Scheduling,control over, 8.2.6
Schema, 2.0

attribute, 2.0
composition, 2.2.2.1, 2.3.2.1, 2.4.2.1, 2.5.2.1
,data base, 2.6.1
definition,entry, 3.5

,file, 3.6

,group, 3.3
fl

,group relation, 3.4
fl

,group relation, 2.3.2.1
instance, 2.0

Security clearance (for programming user), 7.4.5
(of data), 3.2, 7.4.5, 8.2

Selection criteria (for non-programming user), 4.0, 5.3.3
(for programming user), 7.4.4

Self-contained capability, 1.5.2, 1.7.3
system, 1.5.2, 1.7.3, 1.1.1

Separators, 9.1
Sequencer, 2.2, 3.2
Sequential mode (of processing), 7.2.2

storage devices, 9.2.1
structure, 9.2.2

,entry, 2.4.2.1
,file, 2.5.2.1
,group, 2.2.2.1

509
518

www.manaraa.com

A-7

Simple condition, 4.3.1
group, 2.2

Software environment, 10.2
1,

interfaces, 10.2.4
Sort, 4.6.4
Space allocation, 6.3
Statements,change, 7.5.3.2

,close, 7.5.1.2
,control, 7.5.1

It ,delete, 7.5.3.3
(for non-programming user), see Interrogation, Update
(for programming user), see Programming Facilities
,hold, 7.5.3.4
,locate, 7.5.2.1
,locate & access, 7.5.2.2
,modification, 7.5.3
,open, 7.5.1.1
,reorder,

,reorganization, 7.5.3.5
,retrieval, 7.5.2

Storage devices, 9.2.1
" ,entry, 9.2, 9.3

,file, 9.2., 9.3

,item, 9.1.1, 9.1.2
media, 9.2.1, 10.1.2

(of programs), 8.2.5

structure, 1.6.1, 1.8.9, 1.5, 2.0, 9.0
fl

,chained, 9.2.2.2
,direct, 9.2.2.1

111 11

(for creation), 6.2
11 ,index sequential, 9.2.3

,sequential, 9.2.2
String item, 2.1.1.2

matching conditions, 4.3.1.5
Subitem, 2.1.2.3, 3.2
System identifier, 2.2.3.3
Table handling, 7.5.4.1
Telecommunications statements, 7.5.4.2
Terminal equipment (support of), 11.1.3
Transaction, 5.0

11

definition, 5.0, 5.2.1
mode, 5.2.1, 10.3.3
program, 5.0, 5.3

11

definition, 5.3
Transferability, 10.4
Transformation (for creation), 6.5.2

(of transactions), 5.3.T
Tree entry, 2.4
Type,entry,

,file,

2.4.1
2.5.1

" ,group, 2.2.1
,group relation, 2.3.1

ato
519

www.manaraa.com

A -8

Unlinked file, 2.5

Update, 1.8.5, 5.0
ti control (by user), 5.1

mode, 7.2.1
(with entry changes), 5.3.5.1

(with group changes), 5.3.5.2
(with item changes), 5.3.5.3

User working area, 7.4.2
Validation (for creation), 6.5.1

t, of transactions), 5.3.6

Value clasp, 2.1.2.2
tt

" attribute, 2.1.2.2, 4.7.3

511
520

